- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Test array values for NaT (not a time) in Numpy
To test array for NaT, use the numpy.isnat() method in Python Numpy. The condition is broadcast over the input. At locations where the condition is True, the out array will be set to the ufunc result. Elsewhere, the out array will retain its original value. Note that if an uninitialized out array is created via the default out=None, locations within it where the condition is False will remain uninitialized.
The out is a location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
Steps
At first, import the required library −
import numpy as np
Create an array with some nat and date values −
arr = np.array(["2021-12-22", "NaT", "NAT", "nAt", '2021-12'], dtype="datetime64[ns]")
Display the array −
print("Array...
", arr)
Get the type of the array −
print("
Our Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Our Array Dimensions...
",arr.ndim)
Get the number of elements in the Array −
print("
Number of elements...
", arr.size)
To test array for NaT, use the numpy.isnat() method in Python Numpy −
print("
Test array for NaT...
",np.isnat(arr))
Example
import numpy as np # Create an array with some nat and date values arr = np.array(["2021-12-22", "NaT", "NAT", "nAt", '2021-12'], dtype="datetime64[ns]") # Display the array print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # Get the number of elements in the Array print("
Number of elements...
", arr.size) # To test array for NaT, use the numpy.isnat() method in Python Numpy print("
Test array for NaT...
",np.isnat(arr))
Output
Array... ['2021-12-22T00:00:00.000000000' 'NaT' 'NaT' 'NaT' '2021-12-01T00:00:00.000000000'] Our Array type... datetime64[ns] Our Array Dimensions... 1 Number of elements... 5 Test array for NaT... [False True True True False]
- Related Articles
- Test element-wise for NaT (not a time) in Numpy
- Test array values for NaT and store the result in a new location in Numpy
- Test array values for finiteness in Numpy
- Test array values for NaN in Numpy
- Test array values for positive or negative infinity in Numpy
- Test Numpy array values for infiniteness and store the result in a new location
- Test array values for finiteness and store the result in a new location in Numpy
- Test array values for NaN and store the result in a new location in Numpy
- Test finiteness (not infinity and not Not a Number) in Numpy
- Test element-wise for NaN in Numpy
- Return range of values from a masked array for each column in Numpy
- Clip (limit) the values in a Numpy array
- Encode string array values in Numpy
- Return range of values from the masked array for each row in Numpy
- Test element-wise for positive or negative infinity in Numpy
