- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Test Numpy array values for infiniteness and store the result in a new location
To test array values for infiniteness, use the numpy.isinf() method in Python Numpy. The new location where we will store the result is a new array. Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes.
Steps
At first, import the required library −
import numpy as np
Create an array with some inf values −
arr = np.array([1, 2, 10, 50, -np.inf, 0., np.inf])
Display the array −
print("Array...
", arr)
Get the type of the array −
print("
Our Array type...
", arr.dtype)
Get the dimensions of the Array −
print("
Our Array Dimensions...
",arr.ndim)
Get the number of elements in the Array −
print("
Number of elements...
", arr.size)
Create another array with the same shape to store the result −
arrRes = np.array([5, 5, 5, 5, 5, 5, 5])
To test array values for infiniteness, use the numpy.isinf() method in Python Numpy. The new location where we will store the result is arrRes −
print("
Test array for infiniteness...
",np.isinf(arr, arrRes))
Check the value of the new array where our result is stored −
print("
Result...
",arrRes)
Example
import numpy as np # Create an array with some inf values arr = np.array([1, 2, 10, 50, -np.inf, 0., np.inf]) # Display the array print("Array...
", arr) # Get the type of the array print("
Our Array type...
", arr.dtype) # Get the dimensions of the Array print("
Our Array Dimensions...
",arr.ndim) # Get the number of elements in the Array print("
Number of elements...
", arr.size) # Create another array with the same shape to store the result arrRes = np.array([5, 5, 5, 5, 5, 5, 5]) # To test array values for infiniteness, use the numpy.isfinite() method in Python Numpy # The new location where we will store the result is arrRes print("
Test array for infiniteness...
",np.isinf(arr, arrRes)) # Check the value of the new array where our result is stored print("
Result...
",arrRes)
Output
Array... [ 1. 2. 10. 50. -inf 0. inf] Our Array type... float64 Our Array Dimensions... 1 Number of elements... 7 Test array for infiniteness... [0 0 0 0 1 0 1] Result... [0 0 0 0 1 0 1]
- Related Articles
- Test array values for finiteness and store the result in a new location in Numpy
- Test array values for NaT and store the result in a new location in Numpy
- Test array values for NaN and store the result in a new location in Numpy
- Compute the absolute values element-wise and store the result in a new location in Numpy
- Return the floor of the array elements and store the result in a new location in Numpy
- Return the ceil of the array elements and store the result in a new location in Numpy
- Return the truncated value of the array elements and store the result in a new location in Numpy
- Return the next floating-point value and store the result in a new location in Numpy
- Return element-wise True where signbit is set (less than zero) and store the result in a new location in Numpy
- Test array values for finiteness in Numpy
- Test array values for NaN in Numpy
- Test array values for NaT (not a time) in Numpy
- Test array values for positive or negative infinity in Numpy
- Clip (limit) the values in an array and place the result in another array in Numpy
- Return a new Three-Dimensional array without initializing entries and store the data in column-major order in Numpy
