- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Return the floor of the array elements and store the result in a new location in Numpy

To return the floor of the array elements, element-wise, use the **numpy.floor()** method in Python Numpy. The new location where we will store the result is a new array.

The floor of the scalar x is the largest integer i, such that i <= x. It is often denoted as **$\mathrm{\lfloor X \rfloor}$**. The
function returns the floor of each element in x. This is a scalar if x is a scalar.

The out is a location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

## Steps

At first, import the required library −

import numpy as np

Create an array −

arr = np.array([97.3, 57.4, 100.8, 50.7, -10.5])

Display the array −

print("Array...\n", arr)

Get the type of the array −

print("\nOur Array type...\n", arr.dtype)

Get the dimensions of the Array −

print("\nOur Array Dimensions...\n", arr.ndim)

Get the number of elements in the Array −

print("\nNumber of elements...\n", arr.size)

Create another array with the same shape to store the result −

arrRes = np.array([5.2, 10.1, 15.7, 20.2, 25.9])

To return the floor of the array elements, element-wise, use the numpy.floor() method in Python Numpy. The new location where we will store the result is arrRes −

print("\nResult (floor)...\n",np.floor(arr, arrRes))

Check the value of the new array where our result is stored −

print("\nResult...\n",arrRes)

## Example

import numpy as np # Create an array arr = np.array([97.3, 57.4, 100.8, 50.7, -10.5]) # Display the array print("Array...\n", arr) # Get the type of the array print("\nOur Array type...\n", arr.dtype) # Get the dimensions of the Array print("\nOur Array Dimensions...\n", arr.ndim) # Get the number of elements in the Array print("\nNumber of elements...\n", arr.size) # Create another array with the same shape to store the result arrRes = np.array([5.2, 10.1, 15.7, 20.2, 25.9]) # To return the floor of the array elements, element-wise, use the numpy.floor() method in Python Numpy # The new location where we will store the result is arrRes print("\nResult (floor)...\n",np.floor(arr, arrRes)) # Check the value of the new array where our result is stored print("\nResult...\n",arrRes)

## Output

Array... [ 97.3 57.4 100.8 50.7 -10.5] Our Array type... float64 Our Array Dimensions... 1 Number of elements... 5 Result (floor)... [ 97. 57. 100. 50. -11.] Result... [ 97. 57. 100. 50. -11.]

- Related Questions & Answers
- Return the ceil of the array elements and store the result in a new location in Numpy
- Return the truncated value of the array elements and store the result in a new location in Numpy
- Return the next floating-point value and store the result in a new location in Numpy
- Test Numpy array values for infiniteness and store the result in a new location
- Return the floor of the array elements in Numpy
- Test array values for finiteness and store the result in a new location in Numpy
- Test array values for NaT and store the result in a new location in Numpy
- Test array values for NaN and store the result in a new location in Numpy
- Compute the absolute values element-wise and store the result in a new location in Numpy
- Return element-wise True where signbit is set (less than zero) and store the result in a new location in Numpy
- Return the floor of a specific array element in Numpy
- Return the floor of the input in Numpy
- Create a new array from the masked array and return a new reference in Numpy
- Return the average of the masked array elements in Numpy
- Return the ceil value of the array elements in Numpy