

- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Create a new array from the masked array and return a new reference in Numpy
To return a new reference when the dtype is not given, use the ma.MaskedArray.__array__() method in Python Numpy.
A masked array is the combination of a standard numpy.ndarray and a mask. A mask is either nomask, indicating that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated array whether the value is valid or not.
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more. It supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.
Steps
At first, import the required library −
import numpy as np import numpy.ma as ma
Create an array with int elements using the numpy.array() method −
arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype)
Get the dimensions of the Array −
print("\nArray Dimensions...\n",arr.ndim)
Create a masked array and mask some of them as invalid −
maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype)
Get the dimensions of the Masked Array −
print("\nOur Masked Array Dimensions...\n",maskArr.ndim)
Get the shape of the Masked Array −
print("\nOur Masked Array Shape...\n",maskArr.shape)
Get the number of elements of the Masked Array −
print("\nElements in the Masked Array...\n",maskArr.size)
To return a new reference when the dtype is not given, use the ma.MaskedArray.__array__() method −
print("\nResult...\n",maskArr.__array__())
Example
# Python ma.MaskedArray - Create a new array from the masked array and return a new reference import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 39], [73, 88, 51], [62, 45, 67]]) print("Array...\n", arr) print("\nArray type...\n", arr.dtype) # Get the dimensions of the Array print("\nArray Dimensions...\n",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0], [ 1, 0, 0], [0, 1, 0], [0, 1, 0]]) print("\nOur Masked Array\n", maskArr) print("\nOur Masked Array type...\n", maskArr.dtype) # Get the dimensions of the Masked Array print("\nOur Masked Array Dimensions...\n",maskArr.ndim) # Get the shape of the Masked Array print("\nOur Masked Array Shape...\n",maskArr.shape) # Get the number of elements of the Masked Array print("\nElements in the Masked Array...\n",maskArr.size) # To return a new reference when the dtype is not given, use the ma.MaskedArray.__array__() method print("\nResult...\n",maskArr.__array__())
Output
Array... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 81] [-- 33 39] [73 -- 51] [62 -- 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Elements in the Masked Array... 12 Result... [[65 68 81] [93 33 39] [73 88 51] [62 45 67]]
- Related Questions & Answers
- Subtract every element from a scalar value and return a new masked Array in NumPy
- Add a scalar value to each element and return a new masked array in NumPy
- Return a masked array containing the same data but with a new shape in Numpy
- Return a new array with the same shape and type as a given array in Numpy
- Return a new array with the same shape and type as given array in Numpy
- Return specified diagonals from a masked array in NumPy
- Return a new array when dtype is different from the current dtype in Numpy
- Return a new array of given shape and type, filled with array-like in Numpy
- Return a new Three-Dimensional array without initializing entries in Numpy
- Return a copy of the masked array in NumPy
- Return the mask of a masked array in Numpy
- Return a new array with the same shape and type as a given array and change the order in Numpy
- Return array of indices of the minimum values from a masked array in NumPy
- Return array of indices of the maximum values from a masked array in NumPy
- Return a new Three-Dimensional array without initializing entries and change the order in Numpy