# Finding Missing Values in a Table of Equivalent Ratios Online Quiz

Following quiz provides Multiple Choice Questions (MCQs) related to Finding Missing Values in a Table of Equivalent Ratios. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Q 1 - Find the missing values in the following table of equivalent ratios:

 2 7 x 14 6 y 8 28

### Explanation

Step 1:

From the given table of values

$\frac{x}{14} = \frac{2}{7}; x = \frac{2}{7} \times \frac{14}{1} = 4$

Step 2:

$\frac{y}{6} = \frac{7}{2}; y = \frac{7}{2} \times 6 = \frac{7}{2} \times \frac{6}{1} = 21$

Step 3:

So, $x = 4; y = 21$

Q 2 - Find the missing values in the following table of equivalent ratios:

 4 9 8 18 12 x y 36

### Explanation

Step 1:

From the given table of values

$\frac{x}{12} = \frac{9}{4}; x = \frac{9}{4} \times 12 = \frac{9}{4} \times \frac{12}{1} = 27$

Step 2:

$\frac{y}{36} = \frac{4}{9}; y = \frac{4}{9} \times 36 = \frac{4}{9} \times \frac{36}{1} = 16$

Step 3:

So, $x = 27; y = 16$

Q 3 - Find the missing values in the following table of equivalent ratios:

 3 10 6 x 9 30 y 40

### Explanation

Step 1:

From the given table of values

$\frac{x}{6} = \frac{10}{3}; x = \frac{10}{3} \times 6 = \frac{10}{3} \times \frac{6}{1} = 20$

Step 2:

$\frac{y}{40} = \frac{3}{10}; y = \frac{3}{10} \times 40 = \frac{3}{10} \times \frac{40}{1} = 12$

Step 3:

So, $x = 20; y = 12$

Q 4 - Find the missing values in the following table of equivalent ratios:

 2 9 4 x 6 27 y 36

### Explanation

Step 1:

From the given table of values

$\frac{x}{4} = \frac{9}{2}; x = \frac{9}{2} \times 4 = \frac{9}{2} \times \frac{4}{1} = 18$

Step 2:

$\frac{y}{36} = \frac{2}{9}; y = \frac{2}{9} \times 36 = \frac{2}{9} \times \frac{36}{1} = 8$

Step 3:

So, $x = 18; y = 8$

Q 5 - Find the missing values in the following table of equivalent ratios:

 3 7 6 14 x 21 12 y

### Explanation

Step 1:

From the given table of values

$\frac{x}{21} = \frac{3}{7}; x = \frac{3}{7} \times \frac{21}{1} = \frac{3}{7} \times \frac{21}{1} = 9$

Step 2:

$\frac{y}{12} = \frac{7}{3}; y = \frac{7}{3} \times 12 = \frac{7}{3} \times \frac{12}{1} = 28$

Step 3:

So, $x = 9; y = 28$

Q 6 - Find the missing values in the following table of equivalent ratios:

 5 7 x 14 15 y 20 28

### Explanation

Step 1:

From the given table of values

$\frac{x}{14} = \frac{5}{7}; x = \frac{5}{7} \times 14 = \frac{5}{7} \times \frac{14}{1} = 10$

Step 2:

$\frac{y}{15} = \frac{7}{5}; y = \frac{7}{5} \times 15 = \frac{7}{5} \times \frac{15}{1} = 21$

Step 3:

So, $x = 10; y = 21$

Q 7 - Find the missing values in the following table of equivalent ratios:

 2 3 4 6 6 x y 12

### Explanation

Step 1:

From the given table of values

$\frac{x}{6} = \frac{3}{2}; x = \frac{3}{2} \times \frac{6}{1} = \frac{3}{2} \times \frac{6}{1} = 9$

Step 2:

$\frac{y}{12} = \frac{2}{3}; y = \frac{2}{3} \times 12 = \frac{2}{3} \times \frac{12}{1} = 8$

Step 3:

So, $x = 9; y = 8$

Q 8 - Find the missing values in the following table of equivalent ratios:

 4 5 x 10 12 y 16 20

### Explanation

Step 1:

From the given table of values

$\frac{x}{10} = \frac{4}{5}; x = \frac{4}{5} \times 10 = \frac{4}{5} \times \frac{10}{1} = 8$

Step 2:

$\frac{y}{12} = \frac{5}{4}; y = \frac{5}{4} \times 12 = \frac{5}{4} \times \frac{12}{1} = 15$

Step 3:

So, $x = 8; y = 15$

Q 9 - Find the missing values in the following table of equivalent ratios:

 2 5 4 10 6 x y 20

### Explanation

Step 1:

From the given table of values

$\frac{x}{6} = \frac{5}{2}; x = \frac{5}{2} \times 6 = \frac{5}{2} \times \frac{6}{1} = 15$

Step 2:

$\frac{y}{20} = \frac{2}{5}; y = \frac{2}{5} \times 20 = \frac{2}{5} \times \frac{20}{1} = 8$

Step 3:

So, $x = 15; y = 8$

Q 10 - Find the missing values in the following table of equivalent ratios:

 4 7 x 14 12 y 16 28

### Explanation

Step 1:

$\frac{x}{14} = \frac{4}{7}; x = \frac{4}{7} \times 14 = \frac{4}{7} \times \frac{14}{1} = 8$

Step 2:

$\frac{y}{12} = \frac{7}{4}; y = \frac{7}{4} \times 12 = \frac{7}{4} \times \frac{12}{1} = 21$

Step 3:

So, $x = 8; y = 21$

finding_missing_values_table_of_equivalent_ratios.htm