
- Python Data Science Tutorial
- Python Data Science
- Python Data Science Introduction
- Python Data Science Environment Setup
- Python Pandas
- Python Numpy
- Python SciPy
- Python Matplotlib
- Python Data Processing
- Python Data Operations
- Python Data cleansing
- Python Processing CSV Data
- Python Processing JSON Data
- Python Processing XLS Data
- Python Relational databases
- Python NoSQL Databases
- Python Date and Time
- Python Data Wrangling
- Python Data Aggregation
- Python Reading HTML Pages
- Python Processing Unstructured Data
- Python word tokenization
- Python Stemming and Lemmatization
- Python Data Visualization
- Python Chart Properties
- Python Chart Styling
- Python Box Plots
- Python Heat Maps
- Python Scatter Plots
- Python Bubble Charts
- Python 3D Charts
- Python Time Series
- Python Geographical Data
- Python Graph Data
- Statistical Data Analysis
- Python Measuring Central Tendency
- Python Measuring Variance
- Python Normal Distribution
- Python Binomial Distribution
- Python Poisson Distribution
- Python Bernoulli Distribution
- Python P-Value
- Python Correlation
- Python Chi-square Test
- Python Linear Regression
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Python - 3D Charts
Python is also capable of creating 3d charts. It involves adding a subplot to an existing two-dimensional plot and assigning the projection parameter as 3d.
Drawing a 3D Plot
3dPlot is drawn by mpl_toolkits.mplot3d to add a subplot to an existing 2d plot.
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt chart = plt.figure() chart3d = chart.add_subplot(111, projection='3d') # Create some test data. X, Y, Z = axes3d.get_test_data(0.08) # Plot a wireframe. chart3d.plot_wireframe(X, Y, Z, color='r',rstride=15, cstride=10) plt.show()
Its output is as follows −

Advertisements