# Prove the following identities, where the angles involved are acute angles for which the expressions are defined.$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

Given:

$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$

To do:

We have to prove the given identity.

Solution:

LHS $=\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}$

$=\frac{(\cos \mathrm{A})^{2}+(1+\sin \mathrm{A})^{2}}{\cos \mathrm{A}(1+\sin \mathrm{A})}$

$=\frac{\cos ^{2} \mathrm{~A}+1+\sin ^{2} \mathrm{~A}+2 \sin \mathrm{A}}{\cos \mathrm{A}(1+\sin \mathrm{A})}$

$=\frac{1+1+2 \sin \mathrm{A}}{\cos \mathrm{A}(1+\sin \mathrm{A})}$

$=\frac{2+2 \sin \mathrm{A}}{\cos \mathrm{A}(1+\sin \mathrm{A})}$

$=\frac{2(1+\sin \mathrm{A})}{\cos \mathrm{A}(1+\sin \mathrm{A})}$

$=\frac{2}{\cos \mathrm{A}}$

$=2 \sec \mathrm{A}$

$=$ RHS

Hence proved.

Updated on 10-Oct-2022 13:23:27