From a point on the ground the angles of elevation of the bottom and top of a transmission tower fixed at the top of $ 20 \mathrm{~m} $ high building are $ 45^{\circ} $ and $ 60^{\circ} $ respectively. Find the height of the transimission tower.
Given:
From a point on the ground the angles of elevation of the bottom and top of a transmission tower fixed at the top of \( 20 \mathrm{~m} \) high building are \( 45^{\circ} \) and \( 60^{\circ} \) respectively.
To do:
We have to find the height of the transmission tower.
Solution:
Let $AB$ be the high building and $BC$ be the length of the transmission tower.
Let point $D$ be the point of observation.
From the figure,
$\mathrm{AB}=20 \mathrm{~m}, \angle \mathrm{BDA}=45^{\circ}, \angle \mathrm{CDA}=60^{\circ}$
Let the height of the transmission tower be $\mathrm{BC}=h \mathrm{~m}$ and the distance between the point of observation and the foot of the building be $\mathrm{AD}=x \mathrm{~m}$.
This implies,
$\mathrm{AC}=20+h \mathrm{~m}$
We know that,
$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$
$=\frac{\text { AB }}{DA}$
$\Rightarrow \tan 45^{\circ}=\frac{20}{x}$
$\Rightarrow 1(x)=20$
$\Rightarrow x=20 \mathrm{~m}$
Similarly,
$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$
$=\frac{\text { CA }}{DA}$
$\Rightarrow \tan 60^{\circ}=\frac{20+h}{x}$
$\Rightarrow \sqrt3=\frac{20+h}{20}$
$\Rightarrow 20+h=20\sqrt3 \mathrm{~m}$
$\Rightarrow h=20(\sqrt3-1) \mathrm{~m}$
Therefore, the height of the transmission tower is $20(\sqrt3-1) \mathrm{~m}$ .
Related Articles From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a $20\ m$ high building are $45^o$ and $60^o$ respectively. Find the height of the tower.
The angles of elevation of the top of a rock from the top and foot of a \( 100 \mathrm{~m} \) high tower are respectively \( 30^{\circ} \) and \( 45^{\circ} \). Find the height of the rock.
From the top of a building \( 15 \mathrm{~m} \) high the angle of elevation of the top of a tower is found to be \( 30^{\circ} \). From the bottom of the same building, the angle of elevation of the top of the tower is found to be \( 60^{\circ} \). Find the height of the tower and the distance between the tower and building.
From the top of a \( 50 \mathrm{~m} \) high tower, the angles of depression of the top and bottom of a pole are observed to be \( 45^{\circ} \) and \( 60^{\circ} \) respectively. Find the height of the pole..
From the top of a \( 7 \mathrm{~m} \) high building, the angle of elevation of the top of a cable tower is \( 60^{\circ} \) and the angle of depression of its foot is \( 45^{\circ} . \) Determine the height of the tower.
A tower stands vertically on the ground. From a point on the ground, \( 20 \mathrm{~m} \) away from the foot of the tower, the angle of elevation of the top of the tower is \( 60^{\circ} \). What is the height of the tower?
A flag-staff stands on the top of 5 m high tower. From a point on the ground, the angle of elevation of the top of the flag-staff is \( 60^{\circ} \) and from the same point, the angle of elevation of the top of the tower is \( 45^{\circ} \). Find the height of the flag-staff.
The angle of elevation of the top of the building from the foot of the tower is \( 30^{\circ} \) and the angle of the top of the tower from the foot of the building is \( 60^{\circ} \). If the tower is \( 50 \mathrm{~m} \) high, find the height of the building.
The angle of elevation of the top of a vertical tower \( P Q \) from a point \( X \) on the ground is \( 60^{\circ} \). At a point \( Y, 40 \) m vertically above \( X \), the angle of elevation of the top is \( 45^{\circ} \). Calculate the height of the tower.
A person observed the angle of elevation of the top of a tower as \( 30^{\circ} \). He walked \( 50 \mathrm{~m} \) towards the foot of the tower along level ground and found the angle of elevation of the top of the tower as \( 60^{\circ} \). Find the height of the tower.
The angle of elevation of the top of a tower from a point \( A \) on the ground is \( 30^{\circ} \). On moving a distance of 20 metres towards the foot of the tower to a point \( B \) the angle of elevation increases to \( 60^{\circ} \). Find the height of the tower and the distance of the tower from the point \( A \).
The angles of elevation and depression of the top and the bottom of a tower from the top of a building, $60\ m$ high, are $30^{o}$ and $60^{o}$ respectively. Find the difference between the heights of the building and the tower and the distance between them.
A T.V. Tower stands vertically on a bank of a river. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is \( 60^{\circ} \). From a point \( 20 \mathrm{~m} \) away this point on the same bank, the angle of elevation of the top of the tower is \( 30^{\circ} \). Find the height of the tower and the width of the river.
A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 5 metres. At a point on the plane, the angles of elevation of the bottom and the top of the flag-staff are respectively \( 30^{\circ} \) and \( 60^{\circ} \). Find the height of the tower.
On the same side of a tower, two objects are located. When observed from the top of the tower, their angles of depression are \( 45^{\circ} \) and \( 60^{\circ} . \) If the height of the tower is \( 150 \mathrm{~m} \), find the distance between the objects.
Kickstart Your Career
Get certified by completing the course
Get Started