- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following quadratic equation by factorization:
$3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5, x≠\frac{1}{3}, \frac{-3}{2}$
Given:
Given quadratic equation is $3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5, x≠\frac{1}{3}, \frac{-3}{2}$.
To do:
We have to solve the given quadratic equation.
Solution:
$3(\frac{3x-1}{2x+3})-2(\frac{2x+3}{3x-1})=5$
$\frac{3(3x-1)(3x-1)-2(2x+3)(2x+3)}{(2x+3)(3x-1)}=5$
$\frac{3(9x^2-3x-3x+1)-2(4x^2+6x+6x+9)}{6x^2-2x+9x-3}=5$
$\frac{27x^2-18x+3-8x^2-24x-18}{6x^2+7x-3}=5$
$19x^2-42x-15=5(6x^2+7x-3)$
$19x^2-42x-15=30x^2+35x-15$
$(30-19)x^2+(35+42)x-15+15=0$
$11x^2+77x=0$
$11(x^2+7x)=0$
$x^2+7x=0$
$x(x+7)=0$
$x=0$ or $x+7=0$
$x=0$ or $x=-7$
The values of $x$ are $0$ and $-7$.
Advertisements