- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following equations for $x$:$ 2^{5 x+3}=8^{x+3} $
Given:
\( 2^{5 x+3}=8^{x+3} \)
To do:
We have to find the value of $x$.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
$2^{5x+3}=8^{x+3}$
$2^{5x+3}=(2^{3})^{x+3}$
$2^{5x+3}=2^{3 x+9}$
Comparing the powers on both sides, we get,
$5x+3=3 x+9$
$5x-3x=9-3$
$2x=6$
$x=\frac{6}{2}$
$x=3$
Therefore, the value of $x$ is $3$.
Advertisements