Solve:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
Given: Pair of linear equations:
$\frac{3 x}{2}-\frac{5 y}{3}=-2$
$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
To do: To solve the given pair of linear equations.
Solution:
Given equations are:
$\frac{3 x}{2}-\frac{5 y}{3}=-2$ .......... $( i)$
$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$ .......$( ii)$
On multiplying equation $( i)$ by $\frac{1}{3}$
$\frac{3 x}{2}\times\frac{1}{3}-\frac{5 y}{3}\times\frac{1}{3}=-2\times\frac{1}{3}$
$\frac{3}{6}x-\frac{5}{9}y=-\frac{2}{3}$ .......... $( iii)$
And multiply $( ii)$ by $\frac{3}{2}$
$\frac{x}{3}\times\frac{3}{2}+\frac{y}{2}\times\frac{3}{2}=\frac{13}{6}\times\frac{3}{2}$
$\frac{3}{6}x+\frac{3}{4}y=\frac{39}{12}$ ......... $(iv)$
Subtract $( iii)$ from $( iv)$
$\frac{3}{6}x+\frac{3}{4}y-\frac{3}{6}x+\frac{5}{9}y=\frac{39}{12}-( -\frac{2}{3})$
$\Rightarrow \frac{3}{4}y+\frac{5}{9}y=\frac{39}{12}+\frac{2}{3}$
$\Rightarrow \frac{27+20}{36}y=\frac{117+24}{36}$
$\Rightarrow \frac{47}{36}y=\frac{141}{36}$
$\Rightarrow 47y=141$
$\Rightarrow y=\frac{141}{47}$
$\Rightarrow y=3$
On putting $y=1$, in $( i)$
$\frac{3 x}{2}-\frac{5}{3}\times3=-2$
$\Rightarrow \frac{3 x}{2}-\frac{15}{3}=-2$
$\Rightarrow \frac{3x}{2}=-2+\frac{15}{3}$
$\Rightarrow \frac{3x}{2}=\frac{-6+15}{3}$
$\Rightarrow \frac{3x}{2}=\frac{9}{3}$
$\Rightarrow 9x=18$
$\Rightarrow x=\frac{18}{9}$
$\Rightarrow x=2$
Thus, $x=2,\ y=3$.
- Related Articles
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Solve the following system of equations: $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- Solve: $\frac{3 y+4}{2-6 y}=\frac{-2}{5}$.
- Solve: $\frac{x}{2}+\frac{2y}{3}=-1$ and $x-\frac{y}{3}=3$.
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
- Solve for $x$:\( \frac{3 x-2}{3}+\frac{2 x+3}{2}=x+\frac{7}{6} \)
- Simplify each of the following:$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}$
- Solve the following pairs of equations:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- Solve: $\frac{4 x-5}{6 x+3}=\frac{2 x-5}{3 x-2}$.
- Solve the following system of equations:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
- Solve the following system of equations: $\frac{3}{x}\ –\ \frac{1}{y}\ =\ −9$ $\frac{2}{x}\ +\ \frac{3}{y}\ =\ 5$
Kickstart Your Career
Get certified by completing the course
Get Started