- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify: $ \frac{7^{-5}}{5^{-3}} \times 10^{-4} \times \frac{6^{-5}}{(42)^{-6}} $
Given:
\( \frac{7^{-5}}{5^{-3}} \times 10^{-4} \times \frac{6^{-5}}{(42)^{-6}} \)
To do:
We have to simplify the given expression.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
$ \begin{array}{l}
\frac{7^{-5}}{5^{-3}} \times 10^{-4} \times \frac{6^{-5}}{( 42)^{-6}} =\frac{7^{-5} \times ( 2\times 5)^{-4} \times 6^{-5}}{5^{-3} \times ( 6\times 7)^{-6}}\\
=\frac{7^{-5} \times 2^{-4} \times 5^{-4} \times 6^{-5}}{5^{-3} \times 6^{-6} \times 7^{-6}}\\
=7^{( -5+6)} \times 2^{-4} \times 5^{( -4+3)} \times 6^{( -5+6)}\\
=7^{1} \times 2^{-4} \times 5^{-1} \times 6^{1}\\
=\frac{42}{2^{4} \times 5}\\
=\frac{42}{16\times 5}\\
=\frac{21}{8\times 5}\\
=\frac{21}{40}
\end{array}$
Advertisements