- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the product:
$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$
$(ii)$. $\frac{3}{10}\times(-9)$
$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$
$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$
$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$
$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
Given:
$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$
$(ii)$. $\frac{3}{10}\times(-9)$
$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$
$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$
$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$
$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
To do: To find the product of the given expression.
Solution:
$(i)$. $\frac{9}{2}\times(-\frac{7}{4})$
$=\frac{9\times(-7)}{2\times4}$
$=-\frac{63}{8}$
$=-7\frac{7}{8}$
$(ii)$. $\frac{3}{10}\times(-9)$
$=-\frac{27}{10}$
$=-2\frac{7}{10}$
$(iii)$. $-\frac{6}{5}\times\frac{9}{11}$
$=\frac{(-6)\times9}{5\times11}$
$=-\frac{54}{55}$
$(iv)$. $\frac{3}{7}\times(-\frac{2}{5})$
$=\frac{3\times(-2)}{7\times5}$
$=-\frac{6}{35}$
$(v)$. $\frac{3}{11}\times\ \frac{2}{5}$
$=\frac{3\times2}{11\times5}$
$=\frac{6}{55}$
$(vi)$. $\frac{3}{-5}\times(-\frac{5}{3})$
$=\frac{3\times(-5)}{(-5)\times3}$
$=\frac{-15}{-15}$
$=1$
- Related Articles
- Fill in the blanks:(i) \( -4 \times \frac{7}{9}=\frac{7}{9} \times -4 \)(ii) \( \frac{5}{11} \times \frac{-3}{8}=\frac{-3}{8} \times\frac{5}{11} \)(iii) \( \frac{1}{2} \times\left(\frac{3}{4}+\frac{-5}{12}\right)=\frac{1}{2} \times(\frac{3}{4})+\frac{1}{2} \times \frac{-5}{12}\)(iv) $\frac{-4}{5} \times(\frac{5}{7} \times \frac{-8}{9})=(\frac{-4}{5} \times$____ ) $\times\frac{-8}{9}$
- Multiply and reduce to lowest form (if\ possible):(i) $\frac{2}{3}\times2\frac{2}{3}$(ii) $\frac{2}{7}\times\frac{7}{9}$(iii) $\frac{3}{8}\times\frac{6}{4}$(iv) $\frac{9}{5}\times\frac{3}{5}$(v) $\frac{1}{3}\times\frac{15}{8}$(vi) $\frac{11}{2}\times\frac{3}{10}$(vii) $\frac{4}{5}\times\frac{12}{7}$
- State the properties illustrated by these statement:$( i)$. $\frac{5}{6} \times 1=1 \times \frac{5}{6}$$( ii)$. $(\frac{-3}{7}) \times \frac{5}{8}=\frac{5}{8} \times(\frac{-3}{7})$$( iii)$. $\frac{-6}{11} \times( \frac{-1}{-18})=( \frac{-1}{-18}) \times \frac{-6}{11}$$( iv)$. $\frac{-4}{5} \times(\frac{5}{12}+\frac{7}{18})=\frac{-4}{5} \times \frac{5}{12}+\frac{-4}{5} \times \frac{7}{18}$$( v)$. $[\frac{3}{8} \times(\frac{-9}{16})] \times \frac{5}{6}=\frac{3}{8} \times[( \frac{-9}{16}) \times \frac{5}{6}]$$( vi)$. $\frac{8}{-13} \times(\frac{-13}{8})=1$$( vii)$. $\frac{12}{19} \times[\frac{-3}{18} \times(\frac{12}{-33})]=[\frac{12}{19} \times( \frac{-3}{18})] \times( \frac{12}{-33})$$( viii)$. $\frac{1}{3} \times(\frac{-7}{11}-\frac{2}{5})=\frac{1}{3} \times(\frac{-7}{11})-\frac{1}{3} \times \frac{2}{5}$
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Multiply and reduce to lowest form and convert into a mixed fraction:(i) $7\times\frac{1}{5}$(ii) $ 4\times\frac{1}{3}$(iii) $2\times\frac{6}{7}$ (iv) $5\times\frac{2}{9}$ (v) $\frac{2}{3}\times 4$(vi) $\frac{5}{2}\times 6$ (vii) $11\times\frac{4}{7}$ (viii) $20\times\frac{4}{5}$ (ix) $13\frac{1}{3}$ (x) $15\times\frac{3}{5}$
- Use the distributive property to evaluate:(i) \( \frac{9}{13} \times 3 \frac{1}{5}-2 \frac{1}{3} \times \frac{9}{13} \)(ii) \( 6 \frac{2}{5} \times \frac{3}{7}+\frac{4}{7} \times 6 \frac{2}{5} \)
- Simplify:(i) \( \left(\frac{3}{2} \times \frac{1}{6}\right)+\left(\frac{5}{3} \times \frac{7}{2}\right)-\left(\frac{13}{8} \times \frac{4}{3}\right) \)(ii) \( \left(\frac{1}{4} \times \frac{2}{7}\right)-\left(\frac{5}{14} \times \frac{-2}{3}\right)+\left(\frac{3}{7} \times \frac{9}{2}\right) \)(iii) \( \left(\frac{13}{9} \times \frac{-15}{2}\right) \times\left(\frac{7}{3} \times \frac{8}{5}\right)+\left(\frac{3}{5} \times \frac{1}{2}\right) \)(iv) \( \left(\frac{3}{11} \times \frac{5}{6}\right)-\left(\frac{9}{12} \times \frac{4}{3}\right)+\left(\frac{5}{13} \times \frac{6}{15}\right) \)
- Simplify:(i) \( \left(\frac{25}{8} \times \frac{2}{5}\right)-\left(\frac{3}{5} \times \frac{-10}{9}\right) \)(ii) \( \left(\frac{1}{2} \times \frac{1}{4}\right)+\left(\frac{1}{2} \times 6\right) \)(iii) \( \left(-5 \times \frac{2}{15}\right)=\left(-6 \times \frac{2}{9}\right) \)(iv) \( \left(\frac{-9}{4} \times \frac{5}{3}\right)+\left(\frac{13}{2} \times \frac{5}{6}\right) \)(v) \( \left(\frac{-4}{3} \times \frac{12}{-5}\right)+\left(\frac{3}{7} \times \frac{21}{15}\right) \)(vi) \( \left(\frac{13}{5} \times \frac{8}{3}\right)-\left(\frac{-5}{2} \times \frac{11}{3}\right) \)(vii) \( \left(\frac{13}{7} \times \frac{11}{26}\right)-\left(\frac{-4}{3} \times \frac{5}{6}\right) \)(viii) \( \left(\frac{8}{5} \times \frac{-3}{2}\right)+\left(\frac{-3}{10} \times \frac{11}{16}\right) \)
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Using appropriate properties find.(i) \( -\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6} \)(ii) \( \frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5} \).
- Name the property of multiplication of rational numbers illustrated by the following statements:(i) \( \frac{-5}{16} \times \frac{8}{15}=\frac{8}{15} \times \frac{-5}{16} \)(ii) \( \frac{-17}{5} \times 9=9 \times \frac{-17}{5} \)(iii) \( \frac{7}{4} \times\left(\frac{-8}{3}+\frac{-13}{12}\right)=\frac{7}{4} \times \frac{-8}{3}+\frac{7}{4} \times \frac{-13}{12} \)(iv) \( \frac{-5}{9} \times\left(\frac{4}{15} \times \frac{-9}{8}\right)=\left(\frac{-5}{9} \times \frac{4}{15}\right) \times \frac{-9}{8} \)(v) \( \frac{13}{-17} \times 1=\frac{13}{-17}=1 \times \frac{13}{-17} \)(vi) \( \frac{-11}{16} \times \frac{16}{-11}=1 \)(vii) \( \frac{2}{13} \times 0=0=0 \times \frac{2}{13} \)(viii) \( \frac{-3}{2} \times \frac{5}{4}+\frac{-3}{2} \times \frac{-7}{6}=\frac{-3}{2} \times (\frac{5}{4}+\frac{-7}{6}) \)
- Simplify$[(\frac{3}{5})^{5}$ $\times$ $(\frac{2}{7})^{3} ]$ $\div [(\frac{-3}{7})^{4} \times (\frac{2}{5})^{5}]$
-  Find $\frac{2}{7}\times\frac{5}{9}$ a) Is $\frac{2}{7}\times\frac{5}{9}$= $\frac{5}{9}\times\frac{2}{7}$ b) Is $\frac{2}{7}\times\frac{5}{9}$ > or$\frac{5}{9}\times\frac{2}{7}$?
- Simplify the following:$\frac{5}{9}-(2\times \frac{3}{5}) - (3\times \frac{3}{5} \times 0)$
- Simplify the following :$\frac{5}{2} - \frac{3}{5} \times \frac{7}{2} + \frac{3}{5} \times \frac{-2}{3}$

Advertisements