Show that $\triangle ABC$, where $A (-2, 0), B (2, 0), C (0, 2)$ and $\triangle PQR$, where $P (-4, 0), Q (4, 0), R (0, 4)$ are similar.


Given:

$A (-2, 0), B (2, 0), C (0, 2)$ are vertices of $\triangle ABC$ and $P (-4, 0), Q (4, 0), R (0, 4)$ are vertices of $\triangle PQR$.

To do:

We have to show that $\triangle ABC$ and $\triangle PQR$ are similar.
Solution:

We know that,

The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).

Therefore,

In $\triangle ABC$,

\( A B=\sqrt{(2+2)^{2}+(0-0)^{2}} \)
\( =\sqrt{16} \)

\( =4 \) units
\( B C=\sqrt{(0-2)^{2}+(2-0)^{2}} \)
\( =\sqrt{4+4} \)

\( =\sqrt{8} \)

\( =2 \sqrt{2} \) units
\( C A=\sqrt{(-2-0)^{2}+(0-2)^{2}} \)
\( =\sqrt{4+4} \)

\( =\sqrt{8} \)

\( =2 \sqrt{2} \) units

In $\triangle PQR$,

\( P Q=\sqrt{(4+4)^{2}+(0-0)^{2}} \)
\( =\sqrt{64} \)

\( =8 \) units

\( QR=\sqrt{(0-4)^{2}+(4-0)^{2}} \)
\( =\sqrt{32} \)

\( =4 \sqrt{2} \) units
\( RP=\sqrt{(0+4)^{2}+(4-0)^{2}} \)
\( =\sqrt{16+16} \)

\( =\sqrt{32} \)

\( =4 \sqrt{2} \) units
Here,

\( \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{4}{8}=\frac{1}{2} \)
\( \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2} \)

\( \frac{\mathrm{CA}}{\mathrm{PQ}}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2} \)

Therefore,

\( \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}} \)
This implies, by SSS similarity,

\( \triangle \mathrm{ABC} \sim\ \triangle \mathrm{PQR} \)

Hence proved.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

37 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements