- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove the following:$ \frac{\tan \left(90^{\circ}-A\right) \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A=0 $
To do:
We have to prove that \( \frac{\tan \left(90^{\circ}-A\right) \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A=0 \).
Solution:
We know that,
$tan\ (90^{\circ}- \theta) = cot\ \theta$
$sin\ \theta=\frac{1}{cosec\ \theta}$
$\cot \theta=\frac{\cos\ \theta}{\sin\ \theta}$
Therefore,
$\frac{\tan \left(90^{\circ}-A\right) \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A=\frac{\cot A \times \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A$
$=\cot^2 A \times \frac{1}{\operatorname {cosec}^{2} A}-\cos ^{2} A$
$=\frac{cos^{2} A}{sin^{2} A}\times sin^{2} A-cos^{2} A$
$=cos^2 A-cos^2 A$
$=0$
Hence proved.
Advertisements