- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove:
$ \left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A $
Given:
$\frac{1+tan^2A}{1+cot^2A}=(\frac{1-tanA}{1-cotA})^2=tan^2A$
To do:
We have to prove the given equation.
Solution:
$\frac{1+tan^2A}{1+cot^2A}$
$=\frac{(1+\frac{sin^2A}{cos2A})}{(1+\frac{cos^2A}{sin^2A})}$
$=\frac{\frac{(cos^2A+sin^2A)}{cos^2A}}{\frac{(sin^2A+cos^2A)}{sin^2A}}$
$=\frac{(\frac{1}{cos^2A})}{(\frac{1}{sin^2A})}$
$=\frac{1}{cos^2A}\times \frac{sin^2A}{1}$
$=\frac{sin^2A}{cos^2A}$
$=tan^2A$
$(\frac{1-tanA}{1-cotA})^2$
$=\frac{(1+tan^2A-2tanA)}{(1+cot^2-2cotA)}$
$=\frac{(sec^2A-\frac{2sinA}{cosA})}{(cosec^2A-\frac{2cosA}{sinA})}$
$=\frac{\frac{1}{cos^2A}-\frac{2sinA}{cosA}}{\frac{1}{sin^2A}-\frac{2cosA}{sinA}}$
$=\frac{\frac{(1-2sinAcosA)}{cos^2A}}{\frac{(1-2cosAsinA)}{sin^2A}}$
$=\frac{(1-2sinAcosA)}{cos^2A} \times \frac{sin^2A}{(1-2sinAcosA)}$
$=\frac{sin^2A}{cos^2A}$
$=tan^2A$
Hence proved.
Advertisements