Obtain all zeroes of $f(x)\ =\ x^3\ +\ 13x^2\ +\ 32x\ +\ 20$, if one of its zeros is $-2$.


Given:


 $f(x)\ =\ x^3\ +\ 13x^2\ +\ 32x\ +\ 20$ and one of its zeros is $-2$.


To do:


We have to find all the zeros of $f(x)$.

Solution:


If $a$ is a zero of $f(x)$ then $(x-a)$ is a factor of $f(x)$.

Therefore,

$x-(-2)=x+2$ is a factor of $f(x)$.

On applying the division algorithm,

Dividend$f(x)\ =\ x^3\ +\ 13x^2\ +\ 32x\ +\ 20$

Divisor$=x+2$

$x+2$)$x^3+13x^2+32x+20$($x^2+11x+10$

            $x^3+2x^2$

           -----------------------------

                      $11x^2+32x+20$

                      $11x^2+22x$

                     -----------------------

                                    $10x+20$
                                    $10x+20$

                                  --------------

                                          $0$

Therefore,

Quotient$=x^2+11x+10$

$f(x)=(x+2)(x^2+11x+10)$

To get the other zeros, put $x^2+11x+10=0$.

$x^2+x+10x+10=0$

$x(x+1)+10(x+1)=0$

$(x+1)(x+10)=0$

$x+1=0$ and $x+10=0$

$x=-1$ and $x=-10$

All the zeros of the given polynomial $f(x)$ are $-2$, $-10$ and $-1$.

Updated on: 10-Oct-2022

38 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements