"
">

# In figure below, ABCDE is a pentagon. A line through $\mathrm{B}$ parallel to $\mathrm{AC}$ meets $\mathrm{DC}$ produced at F. Show that(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$"

Given:

$ABCDE$ is a pentagon.

A line through $\mathrm{B}$ parallel to $\mathrm{AC}$ meets $\mathrm{DC}$ produced at $F$.

To do:

We have to show that

(i) $\operatorname{ar}(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Solution:

$ABCDE$ is a pentagon and $BF \| AC$.

(i) $\triangle ACB$ and $\triangle ACF$ lie on the same base $AC$ and between the parallels $AC$ and $BF$.

Therefore,

$ar (\triangle ACB) = ar (\triangle ACF)$........…(i)

(ii) $ar (AEDF) = ar (AEDC + ar (\triangle ACF)$

$=ar (AEDC) + ar (\triangle ACB)$                     [From (i)]

$= ar (ABCDE)$

Hence proved.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

12 Views