- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x=3+\sqrt{8} $, find the value of $ x^{2}+\frac{1}{x^{2}} $.
Given:
\( x=3+\sqrt{8} \)
To do:
We have to find the value of \( x^{2}+\frac{1}{x^{2}} \).
Solution:
We know that,
Rationalising factor of a fraction with denominator ${\sqrt{a}}$ is ${\sqrt{a}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}-\sqrt{b}}$ is ${\sqrt{a}+\sqrt{b}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}+\sqrt{b}}$ is ${\sqrt{a}-\sqrt{b}}$.
Therefore,
$x=3+\sqrt{8}$
$\Rightarrow \frac{1}{x}=\frac{1}{3+\sqrt{8}}$
$=\frac{1(3-\sqrt{8})}{(3+\sqrt{8})(3-\sqrt{8})}$
$=\frac{3-\sqrt{8}}{(3)^{2}-(\sqrt{8})^{2}}$
$=\frac{3-\sqrt{8}}{9-8}$
$=\frac{3-\sqrt{8}}{1}$
$=3-\sqrt{8}$
Therefore,
$x+\frac{1}{x}=3+\sqrt{8}+3-\sqrt{8}=6$
Squaring both sides, we get,
$(x+\frac{1}{x})^{2}=(6)^{2}$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2 \times x \times \frac{1}{x}=36$
$\Rightarrow x^{2}+\frac{1}{x^{2}}+2=36$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=36-2$
$\Rightarrow x^{2}+\frac{1}{x^{2}}=34$
The value of \( x^{2}+\frac{1}{x^{2}} \) is $34$.