- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $P = 2^3 \times 3^{10} \times 5$ and $Q = 2 \times 3 \times 7$, then find he LCM of P and Q.
Given:
The given terms are $P = 2^3 \times 3^{10} \times 5$ and $Q = 2 \times 3 \times 7$.
To do :
We have to find the LCM of P and Q.
Solution :
Least Common multiple (LCM): The least common multiple of two or more numbers is the smallest non-zero common number which is a multiple of all the given numbers.
The LCM of two or more numbers is the product of the prime factors counted the maximum number of times they occur in any of the numbers.
2 occurs maximum number of times in $Q(2^5)$, 3 occurs maximum number of times in $P(3^{10})$, 5 occurs maximum number of times in $P(5^1)$ and 7 occurs maximum number of times in $Q(7^1)$
Therefore,
LCM of P and Q $= 2^5 \times 3^{10} \times 5 \times 7 = 35 \times2^5 \times 3^{10}$.
Therefore, LCM of P and Q is $35 \times2^5 \times 3^{10}$
- Related Articles
- Observe the following pattern\( (1 \times 2)+(2 \times 3)=\frac{2 \times 3 \times 4}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)=\frac{3 \times 4 \times 5}{3} \)\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)=\frac{4 \times 5 \times 6}{3} \)and find the value of\( (1 \times 2)+(2 \times 3)+(3 \times 4)+(4 \times 5)+(5 \times 6) \)
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Simplify and verify for $p=1$ and $q=1$: $( p^{2} \times3p^{3}\times(-8p^{5})$.
- Simplify and write the answers in exponential forms.(a) \( 3 \times 3^{10} \)(b) \( 5^{2} \times 5^{7} \)(c) \( (-7)^{2} \times(-7)^{7} \)(d) \( 27^{3} \p 3^{9} \)(e) \( \left(25^{0}+5^{0}\right) \times 5^{0} \)(f) \( \left(2^{0} \p 3^{0}\right) \times 4^{0} \)
- Solve \( 2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2} \).
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- $0.5 \times 0.05 \times \sqrt{q}=\sqrt{0.5 \times 0.05 \times p} ; \frac{p}{q}=?$
- Simplify \( \frac{3^{9} \times p^{7}}{9^{3} \times p^{4}} \).
- Find the following product.\( \left(\frac{4}{3} p q^{2}\right) \times\left(\frac{-1}{4} p^{2} r\right) \times\left(16 p^{2} q^{2} r^{2}\right) \)
- Solve: $( \frac{( 2^{5})^{2} \times 7^{3}}{8^{3} \times 7})$.
- Simplify:$(i)$. $(-4)^3$$(ii)$. $(-3)\times(-2)^3$$(iii)$. $(-3)^2\times(-5)^2$$(iv)$. $(-2)^3\times(-10)^3$
- Find the products of the following:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$
- Simplify the following:a. $3 \times 10^2$ b. $2^5 \times 5^3$c. $0 \times 10^4$
- Simplify:\( \left(\frac{5^{-1} \times 7^{2}}{5^{2} \times 7^{-4}}\right)^{\frac{7}{2}} \times\left(\frac{5^{-2} \times 7^{3}}{5^{3} \times 7^{-5}}\right)^{\frac{-5}{2}} \)
- Simplify the following:\( 3^{4} \times 10^{4} \times 125 \times x^{10} \p 5^{7} \times 6^{4} \times\left(x^{7}\right) \)
