# Find the products of the following:(i). $(-4) \times (-5) \times (-8) \times (-10)$(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$

Given :

The given terms are,

(i).  $(-4) \times (-5) \times (-8) \times (-10)$

(ii). $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$

To do :

We have to find the product of the given terms.

Solution :

We know that,

If there are an even number of negative factors to multiply, the product is positive. If there are an odd number of negative factors, the product is negative.

(i)$(-4) \times (-5) \times (-8) \times (-10)$

There are four negative numbers, therefore the product is positive.

$(-4) \times (-5) \times (-8) \times (-10) = (4\times 5\times 8\times 10)$

$= (20\times 80)$

$= 1600$.

Therefore, the product of $(-4) \times (-5) \times (-8) \times (-10)$ is 1600.

(ii)$(-6) \times (-5) \times (-7) \times (-2) \times (-3)$

There are five negative numbers, therefore the product is negative.

$(-6) \times (-5) \times (-7) \times (-2) \times (-3) = -(6\times 5\times 7\times 2\times 3)$

$= - 30\times 42$

$= -1260$

Therefore, the product of $(-6) \times (-5) \times (-7) \times (-2) \times (-3)$ is $-1260$.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

41 Views