- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $a +b + c = 9$ and $ab + bc + ca = 26$, find the value of $a^3 + b^3 + c^3 - 3abc$.
Given :
$a +b + c = 9$ and $ab + bc + ca = 26$
To do :
We have to find the value of $a^3 + b^3 + c^3 - 3abc$.
Solution :
We know that,
$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=a^3+b^3+c^3-3abc$
$a + b + c = 9$
Squaring both sides, we get,
$(a + b + c)^2 = (9)^2$
$a^2 + b^2 + c^2 + 2 (ab + bc + ca) = 81$
$a^2 + b^2 + c^2 + 2 \times26 = 81$
$a^2 + b^2 + c^2 + 52 = 81$
$a^2 + b^2 + c^2 = 81 - 52 = 29$
Therefore,
$a^3 + b^3 + c^3 – 3abc = (a + b + c) [(a^2 + b^2 + c^2) – (ab + bc + ca)]$
$= 9(29 – 26)$
$= 9 \times 3$
$= 27$
Hence, $a^3 + b^3 + c^3 – 3abc =27$.
- Related Articles
- If $a + b + c = 9$, and $a^2 + b^2 + c^2 = 35$, find the value of $a^3 + b^3 + c^3 - 3abc$.
- If $a + b + c = 9$ and $ab + bc + ca = 23$, find the value of $a^2 + b^2 + c^2$.
- If $a + b = 10$ and $ab = 21$, find the value of $a^3 + b^3$.
- If $a - b = 4$ and $ab = 21$, find the value of $a^3-b^3$.
- If $a + b = 8$ and $ab = 6$, find the value of $a^3 + b^3$.
- If $a – b = 6$ and $ab = 20$, find the value of $a^3-b^3$.
- If $a + b + c = 0$ and $a^2 + b^2 + c^2 = 16$, find the value of $ab + bc + ca$.
- If $a^2 + b^2 + c^2 = 16$ and $ab + bc + ca = 10$, find the value of $a + b + c$.
- If $a\ =\ 2$, $b\ =\ 3$ and $c\ =\ 1$, find the value of: $a^2\ +\ b^2\ +\ -\ 2ab\ -\ 2bc\ -\ 2ca +\ 3abc$
- If \( a=2, b=3 \) and \( c=4, \) then find the value of \( 3 a-b+c \).
- If the roots of the equation $(c^2-ab)x^2-2(a^2-bc)x+b^2-ac=0$ are equal, prove that either $a=0$ or $a^3+b^3+c^3=3abc$.
- Find the value of $(x-a)^3 + (x-b)^3 + (x-c)^3 - 3 (x-a)(x-b)(x-c)$ if $a+b+c = 3x$
- Find the value of \( a^{3}+b^{3}+3 a b^{2}+3 a^{2} b \) if \( a=2, b=-3 \).
- If $a=2$ and $b=3$, find the value of $ab-a^{2}$.
- If $a = 3$ and $b =-2$, find the values of:$(a+b)^{ab}$

Advertisements