If $a=2$ and $b=3$, find the value of $ab-a^{2}$.
Given: $a=2$ and $b=3$.
To do: To find the value of $ab-a^{2}$.
Solution:
$ab-a^{2}$
$=a( b-a)$
$=2( 3-2)$
$=2( 1)$
$=2$
Thus, $ab-a^2=2$.
- Related Articles
- If $a + b = 10$ and $ab = 16$, find the value of $a^2 – ab + b^2$ and $a^2 + ab + b^2$.
- If a=3 and b=-1then find the value of$5 ab-2 a^{2}+5 b^{2}$
- If $a+b = 5$ and $ab =2$, find the value of $a^2+b^2$.
- If a = 2 and b = 3 , find the value of1. $a + b$. $a^{2} + ab$ 3. $ab - a^{2}$4. $2a - 3b$5. $5a^{2} - 2ab$
- If $ab=100$ and $a+b=25$, find the value of $a^2+b^2$.
- If $a = 3$ and $b =-2$, find the values of:$(a+b)^{ab}$
- Find the value of \( a^{3}+b^{3}+3 a b^{2}+3 a^{2} b \) if \( a=2, b=-3 \).
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- Simplify the Expression and Find its Value when $a=5$ and $b=-3$.$2(a^2+ab)+3-ab$
- If \( a=2 \) and \( b=3 \), find the value of\( a+b \)\( a^{2}+a b \)\( 2 a-3 b \)\( 5 a^{2}-2 a b \)
- If $a + b + c = 0$ and $a^2 + b^2 + c^2 = 16$, find the value of $ab + bc + ca$.
- If $a^2 + b^2 + c^2 = 16$ and $ab + bc + ca = 10$, find the value of $a + b + c$.
- If $a + b + c = 9$ and $ab + bc + ca = 23$, find the value of $a^2 + b^2 + c^2$.
- If $a + b + c = 9$, and $a^2 + b^2 + c^2 = 35$, find the value of $a^3 + b^3 + c^3 - 3abc$.
- If $a+b = 6$ and $ab = 8$, find $a^2+b^2$.
Kickstart Your Career
Get certified by completing the course
Get Started