If A and B are points $(-2, -2)$ and $(2, -4)$ and P is a point lying on AB such that AP = $\frac{3}{7}$ AB, then find coordinates of P.
Given: If A and B are points $(-2, -2)$ and $(2, -4)$ and P is a point lying on AB such that AP = $\frac{3}{7}$ AB
To Do: Find coordinates of P.
Answer:
Given A and B are points $(-2, -2)$ and $(2, -4)$. P is a point such that AP = $\frac{3}{7}$ AB or
PB = $\frac{4}{7}$ AB
This means P divides AB in the ratio 3 : 4
The coordinates of point P = $\frac{m\times2 + n\times1}{m + n}$, $\frac{my2 + ny1}{m + n}$
=$\frac{3\times2 + 4\times-2}{3+4}, \frac{3\times-4 + 4\times-2}{3+4}$
= $\frac{6-8}{7}, \frac{-12-8}{7}$
Therefore, the coordinates of P are $\frac{-2}{7}, \frac{-20}{7}$
- Related Articles
- If A and B are two points having coordinates $(-2, -2)$ and $(2, -4)$ respectively, find the coordinates of P such that $AP = \frac{3}{7} AB$.
- If $A$ and $B$ are $(-2, -2)$ and $(2, -4)$, respectively, find the coordinates of $P$ such that $AP = \frac{3}{7}AB$ and $P$ lies on the line segment $AB$.
- If the coordinates of points A and B are $( -2,\ -2)$ and $( 2,\ -4)$ respectively, find the coordinates of P such that \ $AP=\frac{3}{7} AB$, where P lies on the line segment AB.
- If $A$ and $B$ are $(1, 4)$ and $(5, 2)$ respectively, find the coordinates of $P$ when $\frac{AP}{BP} = \frac{3}{4}$.
- Let P and Q be the points of trisection of the line segment joining the points $A( 2,\ -2)$ and $B( -7,\ 4)$ such that P is nearer to A. Find the coordinates of P and Q.
- If the coordinates of $P$ and $Q$ are $( -2,\ 0)$ and $( -2,\ 7)$, then find $PQ$?
- If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
- $A (4, 2), B (6, 5)$ and $C (1, 4)$ are the vertices of $\triangle ABC$.Find the coordinates of point P on AD such that $AP : PD = 2 : 1$.
- If a point $A (0, 2)$ is equidistant from the points $B (3, p)$ and $C (p, 5)$, then find the value of $p$.
- Draw a line segment $AB$ of length 7 cm. Using ruler and compass, find a point on AB such that $\frac{AP}{AB} =\frac{3}{5}$
- A point $A( 0,\ 2)$ is equidistant from the points $B( 3,\ p)$ and $C( p,\ 5)$, then find the value of P.
- The line segment joining the points $(3, -4)$ and $(1, 2)$ is trisected at the points $P$ and $Q$. If the coordinates of $P$ and $Q$ are $(p, -2)$ and $(\frac{5}{3}, q)$ respectively. Find the values of $p$ and $q$.
- If the point $P (2, 2)$ is equidistant from the points $A (-2, k)$ and $B (-2k, -3)$, find $k$. Also, find the length of AP.
- If $a + b = 10$ and $ab = 16$, find the value of $a^2 – ab + b^2$ and $a^2 + ab + b^2$.
- If two positive integers $p$ and $q$ can be expressed as $p = ab^2$, and $q = a^3b; a, b$ being prime numbers, then LCM $(p, q)$ is(A) $ab$(B) $a^2b^2$(C) $a^3b^2$(D) $a^3b^3$
Kickstart Your Career
Get certified by completing the course
Get Started