If the coordinates of points A and B are $( -2,\ -2)$ and $( 2,\ -4)$ respectively, find the coordinates of P such that \ $AP=\frac{3}{7} AB$, where P lies on the line segment AB.
Given: The coordinates of points A and B are $( -2,\ -2)$ and $( 2,\ -4)$.
To do: To find the co-ordinates of P such that $AP=\frac{3}{7}AB$, where P lies on the line segment $AB$.
Solution:
Here, $P( x,\ y)$ divides line segment $AB$, such that,
$AP=\frac{3}{7}AB$
$\frac{AP}{AB} =\frac{3}{7}$
$\frac{AB}{AP} =\frac{7}{3}$
On subtrating 1 from both sides,
$\frac{AB}{AP} -1=\frac{7}{3} -1$
$\Rightarrow \frac{AB-AP}{AP} =\frac{7-3}{3}$
$\Rightarrow \frac{BP}{AP} =\frac{4}{3}$
$\Rightarrow \frac{AP}{BP} =\frac{3}{7}$
$\Rightarrow$ AP:BP$=$3:7
Using formula,
We have$P( x,\ y) =( \frac{nx_{1} +mx_{2}}{m+n} ,\ \frac{ny_{1} +my_{2}}{m+n})$
The coordinates of $P( x,\ y) =( \frac{3\times 2+4( -2)}{3+4} ,\ \frac{3( -4) +4( -2)}{3+4})$
$Rightarrow x=\frac{-2}{7} \ \ and\ y=-\frac{20}{7}$
Therefore, The co-ordinates of $P( x,\ y) =( \frac{-2}{7} \ ,\ -\frac{20}{7})$.
Related Articles If $A$ and $B$ are $(-2, -2)$ and $(2, -4)$, respectively, find the coordinates of $P$ such that $AP = \frac{3}{7}AB$ and $P$ lies on the line segment $AB$.
If A and B are two points having coordinates $(-2, -2)$ and $(2, -4)$ respectively, find the coordinates of P such that $AP = \frac{3}{7} AB$.
If A and B are points $(-2, -2)$ and $(2, -4)$ and P is a point lying on AB such that AP = $\frac{3}{7}$ AB, then find coordinates of P.
Let P and Q be the points of trisection of the line segment joining the points $A( 2,\ -2)$ and $B( -7,\ 4)$ such that P is nearer to A. Find the coordinates of P and Q.
If $A$ and $B$ are $(1, 4)$ and $(5, 2)$ respectively, find the coordinates of $P$ when $\frac{AP}{BP} = \frac{3}{4}$.
The line segment joining the points $(3, -4)$ and $(1, 2)$ is trisected at the points $P$ and $Q$. If the coordinates of $P$ and $Q$ are $(p, -2)$ and $(\frac{5}{3}, q)$ respectively. Find the values of $p$ and $q$.
If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
If the point $P (m, 3)$ lies on the line segment joining the points $A (−\frac{2}{5}, 6)$ and $B (2, 8)$, find the value of $m$.
If the coordinates of $P$ and $Q$ are $( -2,\ 0)$ and $( -2,\ 7)$, then find $PQ$?
Point P divides the line segment joining the points $\displaystyle A( 2,1)$ and $\displaystyle B( 5,-8)$ such that $\displaystyle \frac{AP}{AB} =\frac{1}{3}$. If P lies on the line $\displaystyle 2x-y+k=0$, find the value of k.
$A (4, 2), B (6, 5)$ and $C (1, 4)$ are the vertices of $\triangle ABC$.Find the coordinates of point P on AD such that $AP : PD = 2 : 1$.
Points $P$ and $Q$ trisect the line segment joining the points $A(-2,0)$ and $B(0,8)$ such that $P$ is near to $A$. Find the coordinates of $P$ and $Q$.
Find the coordinates of the points of trisection of the line segment joining $(4, -1)$ and $(-2, -3)$.
A point P divides the line segment joining the points$A( 3,\ -5) $ and $B( -4,\ 8)$ such that$\frac{AP}{PB} =\frac{K}{1}$ . if P lies on the line $x+y=0$, then find the value of K.
A point $P$ divides the line segment joining the points $A (3, -5)$ and $B (-4, 8)$ such that $\frac{AP}{PB} = \frac{k}{1}$. If $P$ lies on the line $x + y = 0$, then find the value of $k$.
Kickstart Your Career
Get certified by completing the course
Get Started