- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $a + b = 10$ and $ab = 16$, find the value of $a^2 – ab + b^2$ and $a^2 + ab + b^2$.
Given:
$a + b = 10$ and $ab = 16$
To do:
We have to find the value of $a^2 – ab + b^2$ and $a^2 + ab + b^2$.
Solution:
$a + b = 10$
Squaring both sides, we get,
$(a + b)^2 = (10)^2$
$a^2 + b^2 + 2ab = 100$
$a^2 + b^2 + 2 \times 16 = 100$
$a^2 + b^2 + 32 = 100$
$a^2 + b^2 = 100 - 32 = 68$
Therefore,
$a^2 - ab + b^2 = a^2 + b^2 - ab$
$= 68 - 16$
$= 52$
$a^2 + ab + b^2 = a^2 + b^2 + ab$
$= 68 + 16$
$= 84$
Hence, $a^2 - ab + b^2 = 52$ and $a^2 + ab + b^2 =84$.
Advertisements