Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and their coefficients:

$q(x)\ =\ \sqrt{3}x^2\ +\ 10x\ +\ 7\sqrt{3}$


Given:


$f(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$

To find:

Here, we have to find the zeros of f(x). 

Solution:

To find the zeros of f(x), we have to put $f(x)=0$.

This implies,

$\sqrt{3}x^2 + 10x + 7\sqrt{3}= 0$

$\sqrt{3}x^2 + 7x + 3x + 7\sqrt{3} = 0$

$\sqrt{3}x(x + \sqrt{3}) + 7(x + \sqrt{3}) = 0$

$(x + \sqrt{3})(\sqrt{3}x + 7) = 0$

$x+\sqrt{3}=0$ and $\sqrt{3}x+7=0$

$x = -\sqrt{3}$ and $\sqrt{3}x = -7$

$x = -\sqrt{3}$ and $x=\frac{-7}{\sqrt{3}}$

Therefore, the zeros of the quadratic equation $f(x) = \sqrt{3}x^2 + 10x + 7\sqrt{3}$ are $-\sqrt{3}$ and $\frac{-7}{\sqrt{3}}$.

Verification:

We know that, 

Sum of zeros $= -\frac{coefficient of x}{coefficient of x^2}$

                       $= –\frac{10}{\sqrt{3}}$

Sum of the zeros of $f(x)=-\sqrt{3}+(\frac{-7}{\sqrt{3}})=\frac{-\sqrt{3}\times\sqrt{3}+(-7)}{\sqrt{3}}=\frac{-3-7}{\sqrt{3}}=\frac{-10}{\sqrt{3}}$ 

Product of roots $= \frac{constant}{coefficient of x^2}$

                            $= \frac{7\sqrt{3}}{\sqrt{3}}$

                            $= 7$

Product of the roots of $f(x)=-\sqrt{3}\times\frac{-7}{\sqrt{3}}=7$

Hence, the relationship between the zeros and their coefficients is verified.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

11K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements