Find the value of $a$, if $x + 2$ is a factor of $4x^4 + 2x^3 - 3x^2 + 8x + 5a$.
Given:
Given expression is $4x^4 + 2x^3 - 3x^2 + 8x + 5a$.
$(x + 2)$ is a factor of $4x^4 + 2x^3 - 3x^2 + 8x + 5a$.
To do:
We have to find the value of $a$.
Solution:
We know that,
If $(x-m)$ is a root of $f(x)$ then $f(m)=0$.
$x+2=x-(-2)$
Therefore,
$f(-2)=0$
$\Rightarrow 4(-2)^4+2(-2)^3-3(-2)^2+8(-2)+5a=0$
$\Rightarrow 4(16)+2(-8)-3(4)+8(-2)+5a=0$
$\Rightarrow 64-16-12-16+5a=0$
$\Rightarrow 5a=-20$
$\Rightarrow a=\frac{-20}{5}=-4$
The value of $a$ is $-4$.
- Related Articles
- Find the value of k, if $x – 1$ is a factor of $4x^3 + 3x^2 – 4x + k$.
- If 2 is a zero of the polynomial $p(x)= 4x^2+2x-5a$, then find the value of a.
- Find the values of $a$ and $b$, if $x^2 - 4$ is a factor of $ax^4 + 2x^3 - 3x^2 + bx - 4$.
- In each of the following, two polynomials, find the value of $a$, if $x + a$ is a factor.$x^4 - a^2x^2 + 3x - a$
- If the polynomials $2x^3 + ax^2 + 3x - 5$ and $x^3 + x^2 - 4x + a$ leave the same remainder when divided by $x - 2$, find the value of $a$.
- Find the value of x$3x + 2x = 3x +2$
- If $3x^2-4x-3=0$, then find the value of $x-\frac{1}{x}$.
- In each of the following, two polynomials, find the value of $a$, if $x + a$ is a factor.$x^3 + ax^2 - 2x + a + 4$
- If $x=\frac{(\sqrt{3}+1)}{2}$, then the value of $4x^{3}+2x^{2}-8x+7$ is:$( A).\ 8$$( B).\ 10$$( C).\ 15$$( D).\ 14$
- Find the value of $k$ if $x - 3$ is a factor of $k^2x^3 - kx^2 + 3kx - k$.
- If $x = 2$ is a root of the polynomial $f(x) = 2x^2-3x + 7a$, find the value of $a$.
- Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:(i) $t^2-3, 2t^4 + t^3 - 2t^2 - 9t - 12$(ii) $x^2 + 3x + 1, 3x^4+5x^3-7x^2+2x + 2$(iii) $x^3 -3x + 1, x^5 - 4x^3 + x^2 + 3x + l$
- Find the remainder when $2x^3+3x^2-8x+2$ is divided by $x-2$ (by Remainder theorom)
- If $x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 - ax^2 - x + 2$, find the value of $a$.
- Find the value of x. If:2x $+$ 2 = 3
Kickstart Your Career
Get certified by completing the course
Get Started