- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 - ax^2 - x + 2$, find the value of $a$.
Given:
The given polynomial is $p(x) = 8x^3 - ax^2 - x + 2$.
$x = -\frac{1}{2}$ is a zero of the polynomial $p(x) = 8x^3 - ax^2 - x + 2$.
To do:
We have to find the value of $a$.
Solution:
The zero of the polynomial is defined as any real value of $x$, for which the value of the polynomial becomes zero.
Therefore,
Zero of the polynomial $p(-\frac{1}{2})=0$
$8(-\frac{1}{2})^{3}-a(-\frac{1}{2})^{2}-(-\frac{1}{2})+2=0$
$\Rightarrow 8 \times(-\frac{1}{8})-a \times \frac{1}{4}+\frac{1}{2}+2=0$
$\Rightarrow -1-\frac{a}{4}+\frac{1}{2}+2=0$
$\Rightarrow \frac{3}{2}-\frac{a}{4}=0$
$\Rightarrow \frac{a}{4}=\frac{3}{2}$
$\Rightarrow a=\frac{3 \times 4}{2}$
$\Rightarrow a=6$
The value of $a$ is $6$.
- Related Articles
- Find the value of $x^2+\frac{1}{x^2}$ if $x+\frac{1}{x}=3$.
- If \( x^{2}+\frac{1}{x^{2}}=51 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x^{2}+\frac{1}{x^{2}}=98 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=3+2 \sqrt{2} \), find the value of \( x^{3}- \frac{1}{x^{3}} \).
- If $\frac{2 x}{5}-\frac{3}{2}=\frac{x}{2}+1$, find the value of $x$.
- If \( x-\frac{1}{x}=-1 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- Which one of the following is a polynomial?(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$(B) $\sqrt{2 x}-1$(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- If \( x+\frac{1}{x}=11 \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=66 \), find the value of \( x-\frac{1}{x} \).
- If \( x^{2}+\frac{1}{x^{2}}=79 \), find the value of \( x+\frac{1}{x} \).
- If $x + \frac{1}{x} =20$, find the value of $x^2 + \frac{1}{x^2}$.
- If \( x=3+\sqrt{8} \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- If $p(x) = x^2 - 2\sqrt{2}x+1$, then find the value of $p(2\sqrt{2})$.

Advertisements