Find the value of $k$ if $x - 3$ is a factor of $k^2x^3 - kx^2 + 3kx - k$.
Given:
Given expression is $k^2x^3 - kx^2 + 3kx - k$.
$(x - 3)$ is a factor of $k^2x^3 - kx^2 + 3kx - k$.
To do:
We have to find the value of $k$.
Solution:
We know that,
If $(x-m)$ is a root of $f(x)$ then $f(m)=0$.
Therefore,
$f(3)=0$
$\Rightarrow k^2(3)^3-k(3)^2+3k(3)-k=0$
$\Rightarrow 27k^2-9k+9k-k=0$
$\Rightarrow 27k^2-k=0$
$\Rightarrow k(27k-1)=0$
$\Rightarrow k=0$ or $27k=1$
$\Rightarrow k=0$ or $k=\frac{1}{27}$
The values of $k$ are $0$ and $\frac{1}{27}$.
- Related Articles
- Find the value of k, if $x – 1$ is a factor of $4x^3 + 3x^2 – 4x + k$.
- Find the value of k, if $x + 1$ is a factor of $P(x) = kx^2 x + 2$.
- If one of the zeroes of the quadratic polynomial $( k-1)x^{2}+kx+1$ is $-3$, then find the value of $k$.
- Find the value of \( k \), if \( x=2, y=1 \) is a solution of the equation \( 2 x+3 y=k \)
- If $x^3+5x^2-kx+6$ is divided by $( x-2)$, the remainder is $0$. Find the value of $k$.
- Find the value of \( k \), if \( x-1 \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- Find the value of $k$ if points $(k, 3), (6, -2)$ and $(-3, 4)$ are collinear.
- Find the value of $k$, if the point $P (0, 2)$ is equidistant from $(3, k)$ and $(k, 5)$.
- Find the values of \( k \) if the points \( \mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3) \) and \( \mathrm{C}(5 k-1,5 k) \) are collinear.
- For which value(s) of \( k \) will the pair of equations\( k x+3 y=k-3 \)\( 12 x+k y=k \)have no solution?
- If the zeros of the polynomial $f(x)\ =\ x^3\ -\ 12x^2\ +\ 39x\ +\ k$ are in A.P., find the value of $k$.
- If $\alpha,\ \beta$ are zeroes of $x^2-6x+k$, what is the value of $k$ if $3\alpha+2\beta=20$?
- If the sum of zeroes of the quadratic polynomial $3x^2–kx+6$ is $3$, then find the value of $k$.
- If the sum of the zeroes of the polynomial $P(x)=( k^{2}-14)x^{2}-2x-12$ is $1$. Then find the value of $k$.
- Find \( k \) so that \( x^{2}+2 x+k \) is a factor of \( 2 x^{4}+x^{3}-14 x^{2}+5 x+6 \). Also find all the zeroes of the two polynomials.
Kickstart Your Career
Get certified by completing the course
Get Started