Find the area of a triangle two sides of which are $ 18 \mathrm{~cm} $ and $ 10 \mathrm{~cm} $ and the perimeter is $ 42 \mathrm{~cm} $.
Given:
The sides of the triangle are $18\ cm$ and $10\ cm$ and the perimeter is $42\ cm$.
To do:
We have to find the area of the triangle.
Solution:
Let us assume the third side of the triangle as $x$
This implies,
The three sides of the triangle are $18\ cm, 10\ cm$ and $x\ cm$.
We have,
The perimeter of the triangle as $42\ cm$
We know that,
Perimeter $P$ of a triangle with sides of length a units, b units and c units
$P=(a+b+c)$units.
This implies,
$42\ cm=18\ cm+10\ cm+x\ cm$
$42\ cm=28\ cm+x\ cm$
This implies,
$x\ cm=42\ cm-28\ cm$
$x\ cm=14\ cm$
By Heron's formula:
$A=\sqrt{s(s-a)(s-b)(s-c)}$
Since,
$S=\frac{a+b+c}{2}$
$S=\frac{18+10+12}{2}$
$S=\frac{42}{2}$
$S=21\ cm$
This implies,
$A=\sqrt{21(21-18)(21-10)(21-14)}$
$A=\sqrt{21(3)(11)(7)}$
$A=21\sqrt{11}\ cm^2$
Therefore,
The area of the triangle is $21\sqrt{11}\ cm^2$.
- Related Articles
- Find the area of a triangle two sides of which are 18 cm and \( 10 \mathrm{~cm} \) and the perimeter is \( 42 \mathrm{~cm} \).
- Find the area of a triangle two sides of which are $18\ cm$ and $10\ cm$ and the perimeter is $42\ cm$.
- Find the perimeter of a triangle with sides measuring \( 10 \mathrm{~cm}, 14 \mathrm{~cm} \) and \( 15 \mathrm{~cm} \).
- Two sides of a triangle are \( 12 \mathrm{~cm} \) and \( 14 \mathrm{~cm} \). The perimeter of the triangle is \( 36 \mathrm{~cm} \). What is its third side?
- Two sides of a triangle are \( 12 \mathrm{~cm} \) and \( 14 \mathrm{~cm} \). The perimeter of the triangle is \( 36 \mathrm{~cm} \). What is the length of the third side?
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- The difference between the two adjoining sides of a triangle is \( 20 \mathrm{~cm} \), third side is \( 40 \mathrm{~cm} \) and the perimeter of the same triangle \( 120 \mathrm{~cm} \). Find the area of the triangle.
- An isosceles triangle has perimeter \( 30 \mathrm{~cm} \) and each of the equal sides is \( 12 \mathrm{~cm} \). Find the area of the triangle.
- Find the perimeter of each of the following shapes :(a) A triangle of sides \( 3 \mathrm{~cm}, 4 \mathrm{~cm} \) and \( 5 \mathrm{~cm} \).(b) An equilateral triangle of side \( 9 \mathrm{~cm} \).(c) An isosceles triangle with equal sides \( 8 \mathrm{~cm} \) each and third side \( 6 \mathrm{~cm} \).
- \( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- Construct a triangle with sides \( 5 \mathrm{~cm}, 6 \mathrm{~cm} \) and \( 7 \mathrm{~cm} \) and then another triangle whose sides are \( \frac{5}{7} \) of the corresponding sides of the first triangle.
- A right triangle \( \mathrm{ABC} \) with sides \( 5 \mathrm{~cm}, 12 \mathrm{~cm} \) and \( 13 \mathrm{~cm} \) is revolved about the side \( 12 \mathrm{~cm} \). Find the volume of the solid so obtained.
Kickstart Your Career
Get certified by completing the course
Get Started