Divide the following algebraic identity:$6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}$ by $6 a^{2} b^{2}$
Given :
The given expressions are $6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}$ and $6 a^{2} b^{2}$.
To do :
We have to divide $6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}$ by $6 a^{2} b^{2}$.
Solution :
$6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}$ by $6 a^{2} b^{2}$
$\Rightarrow \frac{6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}}{6 a^{2} b^{2}}$
Take $6ab^2$ as common from the numerator,
$\Rightarrow \frac{6ab^2(a+2b-4ab^2)}{6 a^{2} b^{2}} $
$\Rightarrow \frac{b}{a}(a+2b-4ab^2)$ $[\frac{6ab^2}{6 a^{2} b^{2}}=\frac{b}{a}]$
Therefore, the resultant algebraic expression is $\frac{b}{a}(a+2b-4ab^2)$.
- Related Articles
- Factorize:\( 6 a b-b^{2}+12 a c-2 b c \)
- Calculate The Following Product$(\frac{-10}{3}a^{2}b^{2})(\frac{6}{5}a^{3}b^{2})$
- Simplify:\( 6(2 a+3 b)^{2}-8(2 a+3 b) \)
- Evaluate the following algebraic identify:$(a+b)(a-b)(a^2-b^2)(a^2+b^2)$.
- Factorise each of the following:(i) \( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \)(ii) \( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \)(iii) \( 27-125 a^{3}-135 a+225 a^{2} \)(iv) \( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \)(v) \( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)
- Factorise : $4(a+b) - 6(a+b)^{2}$.
- Factorise each of the following:$( i)$. $8a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$$( iii)$. $27-125 a^{3}-135a+225a^{2}$
- Simplify the following:\( \frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}} \)
- Identify the like termsa) \( -a b^{2},-4 b a^{2}, 8 a^{2}, 2 a b^{2}, 7 b,-11 a^{2},-200 a,-11 a b, 30 a^{2} \)\( \mathrm{b},-6 \mathrm{a}^{2}, \mathrm{b}, 2 \mathrm{ab}, 3 \mathrm{a} \)
- Simplify the expression and find its values if $a=-1, b=-3$.$4 a^{2}-b^{2}+6 a^{2}-7 b^{2}$
- If \( a=2 \) and \( b=3 \), find the value of\( a+b \)\( a^{2}+a b \)\( 2 a-3 b \)\( 5 a^{2}-2 a b \)
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)(c) \( (a-b)^{2} \)
- Factorize the following algebraic expressions:(i) $16-a^6+4a^3b^3-4b^6$(ii) $a^2-2ab+b^2-c^2$(iii) $x^2+2x+1-9y^2$
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)
Kickstart Your Career
Get certified by completing the course
Get Started