Simplify:$ 6(2 a+3 b)^{2}-8(2 a+3 b) $
Given:
\( 6(2 a+3 b)^{2}-8(2 a+3 b) \)
To do:
We have to simplify \( 6(2 a+3 b)^{2}-8(2 a+3 b) \).
Solution:
$6(2a+3b)^2-8(2a+3b)=2(2a+3b)[3(3a+2b)-4]$ [Taking $2(2a+3b)$ common]
$=2(2a+3b)(9a+6b-4)$
Hence, $6(2a+3b)^2-8(2a+3b)=2(2a+3b)(9a+6b-4)$.
- Related Articles
- Simplify the following:$\frac{a^3-b^3}{a^2+ab+b^2}$
- Factorise each of the following:(i) \( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \)(ii) \( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \)(iii) \( 27-125 a^{3}-135 a+225 a^{2} \)(iv) \( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \)(v) \( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)
- Simplify the expression and find its values if $a=-1, b=-3$.$4 a^{2}-b^{2}+6 a^{2}-7 b^{2}$
- Simplify:2 - (-3) + (-6) × 1 ÷ 2
- Find the value of \( a^{3}+b^{3}+3 a b^{2}+3 a^{2} b \) if \( a=2, b=-3 \).
- Calculate The Following Product$(\frac{-10}{3}a^{2}b^{2})(\frac{6}{5}a^{3}b^{2})$
- Simplify the following:\( \frac{4 a b^{2}\left(-5 a b^{3}\right)}{10 a^{2} b^{2}} \)
- Identify the like termsa) \( -a b^{2},-4 b a^{2}, 8 a^{2}, 2 a b^{2}, 7 b,-11 a^{2},-200 a,-11 a b, 30 a^{2} \)\( \mathrm{b},-6 \mathrm{a}^{2}, \mathrm{b}, 2 \mathrm{ab}, 3 \mathrm{a} \)
- Simplify each of the following products:\( (\frac{1}{2} a-3 b)(3 b+\frac{1}{2} a)(\frac{1}{4} a^{2}+9 b^{2}) \)
- Divide the following algebraic identity:$6 a^{2} b^{3}+12 a b^{4}-24 a^{2} b^{5}$ by $6 a^{2} b^{2}$
- Simplify the following.(a) \( (2 a+3)^{2}-(2 a-3)^{2} \)(b) \( (3.5 x-1.5 y)^{2}-(1.5 x-3.5 y)^{2} \)
- Simplify the followinga)$\frac{2}{3} + \frac{1}{6}$b)$\frac{2}{3} - \frac{7}{16}$
- If \( a=2 \) and \( b=3 \), find the value of\( a+b \)\( a^{2}+a b \)\( 2 a-3 b \)\( 5 a^{2}-2 a b \)
- Factorise each of the following:$( i)$. $8a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$$( iii)$. $27-125 a^{3}-135a+225a^{2}$
- Factorize:$a^3 - 3a^2b + 3ab^2 - b^3 + 8$
Kickstart Your Career
Get certified by completing the course
Get Started