- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
An object is placed at a distance of 6 cm from a convex mirror of focal length 12 cm. Find the position and nature of the image.
Distance of the object from the mirror, $u$ = $-$6 cm
Focal length of the mirror, $f$ = 12 cm
To find: Distance or position of the image, $v$, and the nature of the image.
Solution:
From the mirror formula, we know that-
$\frac {1}{f}=\frac {1}{v}+\frac {1}{u}$
Substituting the given values we get-
$\frac {1}{12}=\frac {1}{v}+\frac {1}{(-6)}$
$\frac {1}{12}=\frac {1}{v}-\frac {1}{6}$
$\frac {1}{12}+\frac {1}{6}=\frac {1}{v}$
$\frac {1}{v}=\frac {1+2}{12}$
$\frac {1}{v}=\frac {3}{12}$
$\frac {1}{v}=\frac {1}{4}$
$v=+4cm$
Thus, the distance of the image $v$ is 4 cm from the mirror, and the positive sign implies that the image forms behind the mirror (on the right).
Now, from the magnification formula, we know that-
$m=-\frac {v}{u}$
Substituting the given values we get-
$m=-\frac {4}{(-6)}$
$m=\frac {4}{6}$
$m=\frac {2}{3}$
$m=+0.6$
Thus, the magnification, $m$ is 0.6 which is less than 1, which means the image is small in size, and the positive sign implies that the image is virtual and erect.
Hence, the image is virtual, erect and small in size.