$ A B $ is a chord of a circle with centre $ O $ and radius $ 4 \mathrm{~cm} . A B $ is of length $ 4 \mathrm{~cm} $ and divides the circle into two segments. Find the area of the minor segment.
Given:
\( A B \) is a chord of a circle with centre \( O \) and radius \( 4 \mathrm{~cm} . A B \) is of length \( 4 \mathrm{~cm} \) and divides the circle into two segments.
To do:
We have to find the area of the minor segment.
Solution:
Radius of the circle $r = 4\ cm$ Length of the chord $AB = 4\ cm$
In $\triangle OAB$, $OA = OB = AB = 4\ cm$
This implies,
$\Delta \mathrm{OAB}$ is an equilateral triangle.
Therefore,
$\angle \mathrm{AOB}=\theta=60^{\circ}$
Area of the minor segment $\mathrm{ADB}=(\frac{\pi \theta}{360^{\circ}}-\sin \frac{\theta}{2} \cos \frac{\theta}{2}) r^{2}$
$=(\frac{\pi \times 60^{\circ}}{360^{\circ}}-\sin \frac{60^{\circ}}{2} \cos \frac{60^{\circ}}{2})(4)^{2}$
$=(\frac{\pi}{6}-\sin 30^{\circ} \cos 30^{\circ}) \times 16$
$=16(\frac{\pi}{6}-\frac{1}{2} \times \frac{\sqrt{3}}{2})$
$=16(\frac{\pi}{6}-\frac{\sqrt{3}}{4})$
$=(\frac{16 \times \pi}{6}-16 \times \frac{\sqrt{3}}{4})$
$=(\frac{8 \pi}{3}-4 \sqrt{3}) \mathrm{cm}^{2}$
The area of the minor segment is $(\frac{8 \pi}{3}-4 \sqrt{3}) \mathrm{cm}^{2}$.
Related Articles \( A B \) is a chord of a circle with centre \( O \) and radius \( 4 \mathrm{~cm} . A B \) is of length \( 4 \mathrm{~cm} \). Find the area of the sector of the circle formed by chord \( A B \).
A chord of a circle of radius \( 14 \mathrm{~cm} \) makes a right angle at the centre. Find the areas of the minor and major segments of the circle.
In a circle of radius \( 6 \mathrm{~cm} \), a chord of length \( 10 \mathrm{~cm} \) makes an angle of \( 110^{\circ} \) at the centre of the circle. Find the area of the sector \( O A B \).
A chord \( A B \) of a circle, of radius \( 14 \mathrm{~cm} \) makes an angle of \( 60^{\circ} \) at the centre of the circle. Find the area of the minor segment of the circle. (Use \( \pi=22 / 7) \)
In a circle of radius \( 6 \mathrm{~cm} \), a chord of length \( 10 \mathrm{~cm} \) makes an angle of \( 110^{\circ} \) at the centre of the circle. Find the area of the circle.
In a circle of diameter \( 40 \mathrm{~cm} \) the length of a chord is \( 20 \mathrm{~cm} \). Find the length of minor arc corresponding to the chord.
In a circle of radius \( 6 \mathrm{~cm} \), a chord of length \( 10 \mathrm{~cm} \) makes an angle of \( 110^{\circ} \) at the centre of the circle. Find the length of the arc \( A B \).
In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the quadrant \( O A C B \)."\n
In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the shaded region."\n
In a circle of radius \( 6 \mathrm{~cm} \), a chord of length \( 10 \mathrm{~cm} \) makes an angle of \( 110^{\circ} \) at the centre of the circle. Find the circumference of the circle.
Find the length of a chord which is at a distance of $4\ cm$ from the centre of the circle of radius $6\ cm$.
The lengths of two parallel chords of a circle are \( 6 \mathrm{~cm} \) and \( 8 \mathrm{~cm} \). If the smaller chord is at distance \( 4 \mathrm{~cm} \) from the centre, what is the distance of the other chord from the centre?
Draw a line segment AB of length 8 cm. Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm. Construct tangents to each circle from the centre of the other circle.
In the figure, \( A B \) is a chord of length \( 16 \mathrm{~cm} \) of a circle of radius \( 10 \mathrm{~cm} \). The tangents at \( A \) and \( B \) intersect at a point \( P \). Find the length of \( P A \)."\n
In the figure, a \( \triangle A B C \) is drawn to circumscribe a circle of radius \( 4 \mathrm{~cm} \) such that the segments \( B D \) and \( D C \) are of lengths \( 8 \mathrm{~cm} \) and \( 6 \mathrm{~cm} \) respectively. Find the lengths of sides \( A B \) and \( A C \), when area of \( \triangle A B C \) is \( 84 \mathrm{~cm}^{2} \). "\n
Kickstart Your Career
Get certified by completing the course
Get Started