
- Mixed numbers
- Home
- Writing a mixed number and an improper fraction for a shaded region
- Writing an improper fraction as a mixed number
- Writing a mixed number as an improper fraction
- Mixed number multiplication
- Multiplication of a mixed number and a whole number
- Division with a mixed number and a whole number
- Mixed number division
- Word problem involving multiplication or division with mixed numbers
Mixed number division Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Mixed number division. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Answer : B
Explanation
Step 1:
First, we write the mixed number $6\frac{1}{3}$ as an improper fraction.
$6\frac{1}{3} = \frac{\left ( 6 \times 3 + 1 \right )}{3} = \frac{19}{3}$
Step 2:
$9 \div 6\frac{1}{3} = \frac{9}{1} \div \frac{19}{3} = \frac{9}{1} \times \frac{3}{19}$
Multiplying numerators and denominators
$\frac{9}{1} \times \frac{3}{19} = \frac{(9 \times 3)}{(1 \times 19)} = \frac{27}{19}$
Step 3:
$\frac{27}{19}$ can be written as a mixed number as follows
$\frac{27}{19} = 1\frac{8}{19}$
Step 4:
So, $9 \div 6\frac{1}{3} = 1\frac{8}{19}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $8\frac{1}{5}$ as an improper fraction.
$8\frac{1}{5} = \frac{\left ( 8 \times 5 + 1 \right )}{5} = \frac{41}{5}$
Step 2:
$11 \div 8\frac{1}{5} = \frac{11}{1} \div \frac{41}{5} = \frac{11}{1} \times \frac{5}{41}$
Multiplying numerators and denominators
$\frac{11}{1} \times \frac{5}{41}= \frac{(11 \times 5)}{(1 \times 41)} = \frac{55}{41}$
Step 3:
$\frac{55}{41}$ can be written as a mixed number as follows
$\frac{55}{41} = 1\frac{14}{41}$
Step 4:
So, $11 \div 8\frac{1}{5} = 1\frac{14}{41}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $3\frac{1}{3}$ as an improper fraction.
$3\frac{1}{3} = \frac{\left ( 3 \times 3 + 1 \right )}{3} = \frac{10}{3}$
Step 2:
$7 \div 3\frac{1}{3} = \frac{7}{1} \div \frac{10}{3} = \frac{7}{1} \times \frac{3}{10}$
Multiplying numerators and denominators
$\frac{7}{1} \times \frac{3}{10} = \frac{(7 \times 3)}{(1 \times 10)} = \frac{21}{10}$
Step 3:
$\frac{21}{10}$ can be written as a mixed number as follows
$\frac{21}{10} = 2\frac{1}{10}$
Step 4:
So, $7 \div 3\frac{1}{3} = 2\frac{1}{10}$
Answer : D
Explanation
Step 1:
First, we write the mixed number $5\frac{1}{6}$ as an improper fraction.
$5\frac{1}{6} = \frac{\left ( 5 \times 6 + 1 \right )}{6} = \frac{31}{6}$
Step 2:
$\frac{8}{9} \div 5\frac{1}{6} = \frac{8}{9} \div \frac{31}{6} = \frac{8}{9} \times \frac{6}{31}$
Multiplying numerators and denominators
$\frac{8}{9} \times \frac{6}{31} = \frac{(8 \times 6)}{(9 \times 31)} = \frac{48}{279} = \frac{16}{93}$
Step 3:
So, $\frac{8}{9} \div 5\frac{1}{6} = \frac{16}{93}$
Answer : C
Explanation
Step 1:
First, we write the mixed number $6\frac{2}{5}$ as an improper fraction.
$6\frac{2}{5} = \frac{\left ( 6 \times 5 + 2 \right )}{5} = \frac{32}{5}$
Step 2:
$\frac{19}{5} \div 6\frac{2}{5} = \frac{19}{5} \div \frac{32}{5} = \frac{19}{5} \times \frac{5}{32}$
Multiplying numerators and denominators
$\frac{19}{5} \times \frac{5}{32} = \frac{(19 \times 5)}{(5 \times 32)} = \frac{19}{32}$
Step 3:
So, $\frac{19}{5} \div 6\frac{2}{5} = \frac{19}{32}$
Answer : A
Explanation
Step 1:
First, we write the mixed number $3\frac{5}{6}$ as an improper fraction.
$3\frac{5}{6} = \frac{\left ( 3 \times 6 + 5 \right )}{6} = \frac{23}{6}$
Step 2:
$\frac{13}{8} \div 3\frac{5}{6} = \frac{13}{8} \div \frac{23}{6} = \frac{13}{8} \times \frac{6}{23}$
Multiplying numerators and denominators
$\frac{13}{8} \times \frac{6}{23} = \frac{(13 \times 6)}{(8 \times 23)} = \frac{39}{92}$
Step 3:
So, $\frac{13}{8} \div 3\frac{5}{6} = \frac{39}{92}$
Answer : B
Explanation
Step 1:
First, we write the mixed numbers as improper fractions.
$9\frac{1}{3} = \frac{\left ( 9 \times 3 + 1 \right )}{3} = \frac{28}{3}$
$4\frac{1}{4} = \frac{\left ( 4 \times 4 + 1 \right )}{4} = \frac{17}{4}$
Step 2:
$9\frac{1}{3} \div 4\frac{1}{4} = \frac{28}{3} \div \frac{17}{4} = \frac{28}{3} \times \frac{4}{17}$
Multiplying numerators and denominators
$\frac{28}{3} \times \frac{4}{17} = \frac{(28 \times 4)}{(3 \times 17)} = 1\frac{12}{51}$
Step 3:
$1\frac{12}{51}$ can be written as a mixed number as follows
$1\frac{12}{51} = 2\frac{10}{51}$
Step 4:
So, $9\frac{1}{3} \div 4\frac{1}{4} = 2\frac{10}{51}$
Answer : D
Explanation
Step 1:
First, we write the mixed numbers as improper fractions.
$10\frac{3}{4} = \frac{\left ( 10 \times 4 + 3 \right )}{4} = \frac{43}{4}$
$7\frac{1}{4} = \frac{\left ( 7 \times 4 + 1 \right )}{4} = \frac{29}{4}$
Step 2:
$10\frac{3}{4} \div 7\frac{1}{4} = \frac{43}{4} \div \frac{29}{4} = \frac{43}{4} \times \frac{4}{29}$
Multiplying numerators and denominators
$\frac{43}{4} \times \frac{4}{29}= \frac{(43 \times 4)}{(4 \times 29)} = \frac{43}{29}$
Step 3:
$\frac{43}{29}$ can be written as a mixed number as follows
$\frac{43}{29} = 1\frac{14}{29}$
Step 4:
So, $10\frac{3}{4} \div 7\frac{1}{4} = 1\frac{14}{29}$
Answer : A
Explanation
Step 1:
First, we write the mixed numbers as improper fractions.
$8\frac{1}{5} = \frac{\left ( 8 \times 5 + 1 \right )}{3} = \frac{41}{5}$
$9\frac{3}{5} = \frac{\left ( 9 \times 5 + 3 \right )}{5} = \frac{48}{5}$
Step 2:
$8\frac{1}{5} \div 9\frac{3}{5} = \frac{41}{5} \div \frac{48}{5} = \frac{41}{5} \times \frac{5}{48}$
Multiplying numerators and denominators
$\frac{41}{5} \times \frac{5}{48} = \frac{(41 \times 5)}{(5 \times 48)} = \frac{41}{48}$
Step 3:
So, $8\frac{1}{5} \div 9\frac{3}{5} = \frac{41}{48}$
Answer : B
Explanation
Step 1:
First, we write the mixed numbers as improper fractions.
$10\frac{1}{6} = \frac{\left ( 10 \times 6 + 1 \right )}{6} = \frac{61}{6}$
$7\frac{1}{3} = \frac{\left ( 7 \times 3 + 1 \right )}{3} = \frac{22}{3}$
Step 2:
$10\frac{1}{6} \div 7\frac{1}{3} = \frac{61}{6} \div \frac{22}{3} = \frac{61}{6} \times \frac{3}{22}$
Multiplying numerators and denominators
$\frac{61}{6} \times \frac{3}{22} = \frac{(61 \times 3)}{(6 \times 22)} = \frac{61}{44}$
Step 3:
$\frac{61}{44}$ can be written as a mixed number as follows
$\frac{61}{44} = 1\frac{17}{44}$
Step 4:
So, $10\frac{1}{6} \div 7\frac{1}{3} = 1\frac{17}{44}$