# Maximum Subarray Sum using Divide and Conquer algorithm in C++

C++Server Side ProgrammingProgramming

Suppose we have one list of data with positive and negative values. We have to find the sum of contiguous subarray whose sum is largest. Suppose the list is containing {-2, -5, 6, -2, -3, 1, 5, -6}, then the sum of maximum subarray is 7. It is the sum of {6, -2, -3, 1, 5}

We will solve this problem by using the Divide and Conquer method. The steps will look like below −

Steps

• Divide the array into two parts
• Find the maximum of the following three
• Maximum subarray sum of left subarray
• Maximum subarray sum of right subarray
• Maximum subarray sum such that subarray crosses the midpoint

## Example

#include <iostream>
using namespace std;
int max(int a, int b) {
return (a > b)? a : b;
}
int max(int a, int b, int c) {
return max(max(a, b), c);
}
int getMaxCrossingSum(int arr[], int l, int m, int h) {
int sum = 0;
int left = INT_MIN;
for (int i = m; i >= l; i--) {
sum = sum + arr[i];
if (sum > left)
left = sum;
}
sum = 0;
int right = INT_MIN;
for (int i = m+1; i <= h; i++) {
sum = sum + arr[i];
if (sum > right)
right = sum;
}
return left + right;
}
int maxSubArraySum(int arr[], int low, int high) {
if (low == high)
return arr[low];
int mid = (low + high)/2;
return max(maxSubArraySum(arr, low, mid), maxSubArraySum(arr, mid+1, high), getMaxCrossingSum(arr, low, mid, high));
}
int main() {
int arr[] = {-2, -5, 6, -2, -3, 1, 5, -6};
int n = sizeof(arr)/sizeof(arr);
int max_sum = maxSubArraySum(arr, 0, n-1);
printf("Maximum contiguous sum is %d", max_sum);
}

## Output

Valid String