# Find Maximum Sum Strictly Increasing Subarray in C++

C++Server Side ProgrammingProgramming

Suppose we have an array of n integers. Find the max sum of strictly increasing subarrays. So if the array is like [1, 2, 3, 2, 5, 1, 7], the sum is 8. In this array there are three strictly increasing sub-arrays these are {1, 2, 3}, {2, 5} and {1, 7}. The max sum sub-array is {1, 7}

To solve this problem, we have to keep track of max sum and the current sum. For each element arr[i] if this is larger than arr[i – 1], then we add this to the current sum, otherwise arr[i] is the starting point of another subarray. So we shall update the current sum as array. Before updating current sum, we will update max sum if required.

## Example

Live Demo

#include<iostream>
using namespace std;
int maximum(int a, int b){
return (a>b)?a:b;
}
int maximum_sum_incr_subarr(int array[] , int n) {
int max_sum = 0;
int current_sum = array ;
for (int i=1; i<n ; i++ ) {
if (array[i-1] < array[i])
current_sum = current_sum + array[i];
else {
max_sum = maximum(max_sum, current_sum);
current_sum = array[i];
}
}
return max(max_sum, current_sum);
}
int main() {
int arr[] = {1, 2, 3, 2, 5, 1, 7};
int n = sizeof(arr)/sizeof(arr);
cout << "Maximum sum : " << maximum_sum_incr_subarr(arr , n);
}

## Output

Maximum sum : 8