Machine Learning - Simple Linear Regression

It is the most basic version of linear regression which predicts a response using a single feature. The assumption in SLR is that the two variables are linearly related.

Python Implementation

We can implement SLR in Python in two ways, one is to provide your own dataset and other is to use dataset from scikit-learn python library.

Example 1 − In the following Python implementation example, we are using our own dataset.

First, we will start with importing necessary packages as follows −

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

Next, define a function which will calculate the important values for SLR −

def coef_estimation(x, y):

The following script line will give number of observations n −

n = np.size(x)

The mean of x and y vector can be calculated as follows −

m_x, m_y = np.mean(x), np.mean(y)

We can find cross-deviation and deviation about x as follows −

SS_xy = np.sum(y*x) - n*m_y*m_x
SS_xx = np.sum(x*x) - n*m_x*m_x

Next, regression coefficients i.e. b can be calculated as follows −

b_1 = SS_xy / SS_xx
b_0 = m_y - b_1*m_x
return(b_0, b_1)

Next, we need to define a function which will plot the regression line as well as will predict the response vector −

def plot_regression_line(x, y, b):

The following script line will plot the actual points as scatter plot −

plt.scatter(x, y, color = "m", marker = "o", s = 30)

The following script line will predict response vector −

y_pred = b + b*x

The following script lines will plot the regression line and will put the labels on them −

plt.plot(x, y_pred, color = "g")
plt.xlabel('x')
plt.ylabel('y')
plt.show()

At last, we need to define main() function for providing dataset and calling the function we defined above −

def main():
x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
y = np.array([100, 300, 350, 500, 750, 800, 850, 900, 1050, 1250])

b = coef_estimation(x, y)
print("Estimated coefficients:\nb_0 = {} \nb_1 = {}".format(b, b))
plot_regression_line(x, y, b)
if __name__ == "__main__":
main()

Output

Estimated coefficients:
b_0 = 154.5454545454545
b_1 = 117.87878787878788 Example 2 − In the following Python implementation example, we are using diabetes dataset from scikit-learn.

First, we will start with importing necessary packages as follows −

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

Next, we will load the diabetes dataset and create its object −

As we are implementing SLR, we will be using only one feature as follows −

X = diabetes.data[:, np.newaxis, 2]

Next, we need to split the data into training and testing sets as follows −

X_train = X[:-30]
X_test = X[-30:]

Next, we need to split the target into training and testing sets as follows −

y_train = diabetes.target[:-30]
y_test = diabetes.target[-30:]

Now, to train the model we need to create linear regression object as follows −

regr = linear_model.LinearRegression()

Next, train the model using the training sets as follows −

regr.fit(X_train, y_train)

Next, make predictions using the testing set as follows −

y_pred = regr.predict(X_test)

Next, we will be printing some coefficient like MSE, Variance score etc. as follows −

print('Coefficients: \n', regr.coef_)
print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred))
print('Variance score: %.2f' % r2_score(y_test, y_pred))

Now, plot the outputs as follows −

plt.scatter(X_test, y_test, color = 'blue')
plt.plot(X_test, y_pred, color = 'red', linewidth = 3)
plt.xticks(())
plt.yticks(())
plt.show()

Output

Coefficients:
[941.43097333]
Mean squared error: 3035.06
Variance score: 0.41 machine_learning_with_python_regression_algorithms_linear_regression.htm