- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $tan\ 2A = cot\ (A - 18^o)$, where $2A$ is an acute angle, find the value of $A$.
Given:
\( \tan 2 A=\cot \left(A-18^{\circ}\right) \), where \( 2 A \) is an acute angle.
To do:
We have to find the value of \( A \).
Solution:
We know that,
$\cot (90^{\circ}- \theta) = tan\ \theta$
Therefore,
$\tan 2 A=\cot\left(A-18^{\circ}\right)$
$\cot (90^{\circ}- 2A)=\cot\left(A-18^{\circ}\right)$
Comparing on both sides, we get,
$90^{\circ}-2A =A-18^{\circ}$
$2A+A=90^{\circ}+18^{\circ}$
$3A=108^{\circ}$
$A=\frac{108^{\circ}}{3}$
$A=36^{\circ}$
The value of \( A \) is $36^{\circ}$.
- Related Articles
- If $tan2A=cot (A-18^{o})$, where $2A$ is an angle, find the value of $A$.
- If \( \tan 2 A=\cot \left(A-18^{\circ}\right) \), where \( 2 A \) is an acute angle, find the value of \( A \).
- If $sec\ 4A = cosec\ (A - 20^o)$, where $4A$ is an acute angle, find the value of $A$.
- If $3 cot\ A = 4$, check whether $\frac{1−tan^2A}{1+tan^2A} = cos^2 A – sin^2 A$ or not.
- If \( \sin 3 A=\cos \left(A-26^{\circ}\right) \), where \( 3 A \) is an acute angle, find the value of \( A \).
- If \( \sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right) \), where \( 4 A \) is an acute angle, find the value of \( A \).
- If \( \sec 2 A=\operatorname{cosec}\left(A-42^{\circ}\right) \), where \( 2 A \) is an acute angle, find the value of \( A \).
- Prove that the points $(2a, 4a), (2a, 6a)$ and $(2a + \sqrt3 a , 5a)$ are the vertices of an equilateral triangle.
- If $tan\theta +cot\ \theta =5$, then find the value of $tan^{2} \theta +cot^{2} \theta $.
- If $tan\theta+cot\theta=5$, then find the value of $tan^{2}\theta+cot^{2}\theta$.
- If $tan A = cot B$, prove that $A+B=90^o$.
- If $tan\ A = cot\ B$, prove that $A + B = 90^o$.
- If \( \angle A \) and \( \angle P \) are acute angles such that \( \tan A=\tan P \), then show that \( \angle A=\angle P \).
- If $a=2, b=3$ find the value of the following expressions.(a) $3a+2b$ (b) $2a - b$
- When $a=0$, $b=1$ find the value of the given expressions: $(i)$. $2a+2b$$(ii)$. $2a^2+b^2+1$$(iii)$. $2a^2b+2ab^2+ab$$(iv)$. $a^2+ab+2$

Advertisements