- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \sin \mathrm{A}+\sin ^{2} \mathrm{~A}=1 $, then the value of the expression $ \left(\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right) $ is
(A) 1
(B) $ \frac{1}{2} $
(C) 2
(D) 3
Given:
\( \sin \mathrm{A}+\sin ^{2} \mathrm{~A}=1 \)
To do:
We have to find the value of the expression \( \left(\cos ^{2} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right) \).
Solution:
We know that,
$\sin ^{2} A+\cos ^{2} A=1$
Therefore,
$\sin A+\sin ^{2} A =1$
$\sin A =1-\sin ^{2} A$
$=\cos ^{2} A$
Squaring on both sides, we get,
$\sin ^{2} A=\cos ^{4} A$
$1-\cos ^{2} A =\cos ^{4} A$
$\cos ^{2} A+\cos ^{4} A=1$
- Related Articles
- Write 'True' or 'False' and justify your answer in each of the following:If \( \cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1 \), then \( \sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}=1 \).
- If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
- If \( \sin \mathrm{A}=\frac{1}{2} \), then the value of \( \cot \mathrm{A} \) is(A) \( \sqrt{3} \)(B) \( \frac{1}{\sqrt{3}} \)(C) \( \frac{\sqrt{3}}{2} \)(D) 1
- Prove the following identities, where the angles involved are acute angles for which the expressions are defined.(i) \( (\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta} \)(ii) \( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \)(iii) \( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)[Hint: Write the expression in terms of sin θ and cos θ](iv) \( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)[Hint: Simplify LHS and RHS separately](v) \( \frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A, u s i n g \) the identity \( \operatorname{cosec}^{2} A=1+\cot ^{2} A \).(vi) \( \sqrt{\frac{1+\sin \mathrm{A}}{1-\sin \mathrm{A}}}=\sec \mathrm{A}+\tan \mathrm{A} \)(vii) \( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta \)(viii) \( (\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^{2}+(\cos \mathrm{A}+\sec \mathrm{A})^{2}=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A} \)(ix) \( (\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A} \)[Hint : Simplify LHS and RHS separately] (x) (1+tan2A/1+cot2A) = (1-tan A/1-cot A)2 = tan2A.
- If \( \sin \theta-\cos \theta=0 \), then the value of \( \left(\sin ^{4} \theta+\cos ^{4} \theta\right) \) is(A) 1(B) \( \frac{3}{4} \)(C) \( \frac{1}{2} \)(D) \( \frac{1}{4} \)
- If \( \cos A+\cos ^{2} A=1 \), prove that \( \sin ^{2} A+\sin ^{4} A=1 \)
- The value of the expression \( \left[\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}\right] \) is(A) 3(B) 2(C) 1(D) 0
- If \( 4 \tan \theta=3 \), then \( \left(\frac{4 \sin \theta-\cos \theta}{4 \sin \theta+\cos \theta}\right) \) is equal to(A) \( \frac{2}{3} \)(B) \( \frac{1}{3} \)(C) \( \frac{1}{2} \)(D) \( \frac{3}{4} \)
- Prove the following:$( i).\ ( \frac{\cot ^{2} A}{(\operatorname{cosec} A+1)^{2}}=\frac{1-\sin A}{1+\sin A})$$( ii).\ \frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}=2 \sec A)$.
- Prove the following:If \( \tan \mathrm{A}=\frac{3}{4} \), then \( \sin \mathrm{A} \cos \mathrm{A}=\frac{12}{25} \)
- Prove that:\( \left(1+\tan ^{2} A\right)+\left(1+\frac{1}{\tan ^{2} A}\right)=\frac{1}{\sin ^{2} A-\sin ^{4} A} \)
- If \( \cos A=\frac{\sqrt{3}}{2} \), find the value of \( \frac{1}{\tan A}+\frac{\sin A}{1+\cos A} \)
- Prove the following identities:\( \left(\tan \theta+\frac{1}{\cos \theta}\right)^{2}+\left(\tan \theta-\frac{1}{\cos \theta}\right)^{2}=2\left(\frac{1+\sin ^{2} \theta}{1-\sin ^{2} \theta}\right) \)
- Prove the following identities:\( \left(\frac{1}{\sec ^{2} \theta-\cos ^{2} \theta}+\frac{1}{\operatorname{cosec}^{2} \theta-\sin ^{2} \theta}\right) \sin ^{2} \theta \cos ^{2} \theta=\frac{1-\sin ^{2} \theta \cos ^{2} \theta}{2+\sin ^{2} \theta \cos ^{2} \theta} \)
- Prove the following identities:\( \frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}=\sin A \cos A \)

Advertisements