- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \cos A+\cos ^{2} A=1 $, prove that $ \sin ^{2} A+\sin ^{4} A=1 $
Given:
\( \cos A+\cos ^{2} A=1 \)
To do:
We have to prove that \( \sin ^{2} A+\sin ^{4} A=1 \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$\cos A + \cos^2 A = 1$
$\Rightarrow \cos A = 1 - \cos^2 A$
$\Rightarrow \cos A = sin^2 A$
This implies,
$\sin^2 A + \sin^4 A = \sin^2 A + (\sin^2 A)^2$
$= \cos A + \cos^2 A$
$= 1$
Hence proved.
Advertisements