# The value of the expression $\left[\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}\right]$ is(A) 3(B) 2(C) 1(D) 0

Given:

$\left[\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}\right]$

To do:

We have to find the value of the expression $\left[\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}\right]$.

Solution:

We know that,

$\sin \left(90^{\circ}-\theta\right)=\cos \theta$

$\cos \left(90^{\circ}-\theta\right)=\sin \theta$

$\sin ^{2} \theta+\cos ^{2} \theta=1$

Therefore,

$[\frac{\sin ^{2} 22^{\circ}+\sin ^{2} 68^{\circ}}{\cos ^{2} 22^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}]=\frac{\sin ^{2} 22^{\circ}+\sin ^{2}(90^{\circ}-22^{\circ})}{\cos ^{2}(90^{\circ}-68^{\circ})+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin (90^{\circ}-63^{\circ})$

$=\frac{\sin ^{2} 22^{\circ}+\cos ^{2} 22^{\circ}}{\sin ^{2} 68^{\circ}+\cos ^{2} 68^{\circ}}+\sin ^{2} 63^{\circ}+\cos 63^{\circ} . \cos 63^{\circ}$

$=\frac{1}{1}+(\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ})$

$=1+1$

$=2$

Updated on: 10-Oct-2022

34 Views