- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to omit missing values and move the values to places to complete the data frame structure in R?
When we have alternative missing values in two columns that makes the data frame look filled with values at alternate places in columns as well. In this case, we might want to remove those missing values so that the data frame becomes complete without any missing value. For this purpose we can use na.omit function with transform function as shown in the below examples.
Example
Consider the below data frame −
x1<-rep(c(NA,5),times=10) x2<-rep(c(1,NA),times=10) df1<-data.frame(x1,x2) df1
Output
x1 x2 1 NA 1 2 5 NA 3 NA 1 4 5 NA 5 NA 1 6 5 NA 7 NA 1 8 5 NA 9 NA 1 10 5 NA 11 NA 1 12 5 NA 13 NA 1 14 5 NA 15 NA 1 16 5 NA 17 NA 1 18 5 NA 19 NA 1 20 5 NA
Replacing NA’s in both the columns using single line of code −
Example
df1<-na.omit(transform(df1,x2=c(NA,x2[-nrow(df1)]))) df1
Output
x1 x2 2 5 1 4 5 1 6 5 1 8 5 1 10 5 1 12 5 1 14 5 1 16 5 1 18 5 1 20 5 1
Let’s have a look at another example −
Example
y1<-rep(c(15,NA,25,NA),times=5) y2<-rep(c(NA,414,NA,425),times=5) df2<-data.frame(y1,y2) df2
Output
y1 y2 1 15 NA 2 NA 414 3 25 NA 4 NA 425 5 15 NA 6 NA 414 7 25 NA 8 NA 425 9 15 NA 10 NA 414 11 25 NA 12 NA 425 13 15 NA 14 NA 414 15 25 NA 16 NA 425 17 15 NA 18 NA 414 19 25 NA 20 NA 425
Replacing NA’s in both the columns using single line of code −
Example
df2<-na.omit(transform(df2,y2=c(NA,y2[-nrow(df2)]))) df2
Output
y1 y2 3 25 414 5 15 425 7 25 414 9 15 425 11 25 414 13 15 425 15 25 414 17 15 425 19 25 414
Advertisements