- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to find the row mean for columns in an R data frame by ignoring missing values?
To find the row mean for columns by ignoring missing values, we would need to use rowMeans function with na.rm. For example, if we have a data frame called df that contains five columns and some of the values are missing then the row means will be calculated by using the command: rowMeans(df,na.rm=TRUE).
Consider the below data frame −
Example
x1<-sample(c(NA,rpois(4,5)),20,replace=TRUE) x2<-sample(c(NA,rpois(4,5)),20,replace=TRUE) df1<-data.frame(x1,x2) df1
Output
x1 x2 1 NA 2 2 7 9 3 5 8 4 7 NA 5 NA 8 6 7 8 7 5 2 8 5 NA 9 5 6 10 NA 8 11 7 8 12 5 9 13 5 9 14 NA 9 15 5 6 16 5 NA 17 5 9 18 7 9 19 7 9 20 NA NA
Finding the row means for rows in df1 −
Example
df1$RowMeans<-rowMeans(df1,na.rm=TRUE) df1
Output
x1 x2 RowMeans 1 NA 2 2.0 2 7 9 8.0 3 5 8 6.5 4 7 NA 7.0 5 NA 8 8.0 6 7 8 7.5 7 5 2 3.5 8 5 NA 5.0 9 5 6 5.5 10 NA 8 8.0 11 7 8 7.5 12 5 9 7.0 13 5 9 7.0 14 NA 9 9.0 15 5 6 5.5 16 5 NA 5.0 17 5 9 7.0 18 7 9 8.0 19 7 9 8.0 20 NA NA NaN
Example
y1<-sample(c(NA,rnorm(5)),20,replace=TRUE) y2<-sample(c(NA,rnorm(5)),20,replace=TRUE) df2<-data.frame(y1,y2) df2
Output
y1 y2 1 0.5896447 1.8711656 2 0.9310379 1.1159848 3 2.9883385 0.6290764 4 NA -0.6323118 5 1.4797316 NA 6 2.9883385 -0.1533375 7 0.9310379 1.8711656 8 -0.1495998 0.6290764 9 0.5896447 1.8711656 10 0.5896447 NA 11 2.9883385 -0.1533375 12 0.5896447 -0.6323118 13 2.9883385 0.6290764 14 -0.1495998 1.8711656 15 1.4797316 1.8711656 16 -0.1495998 -0.6323118 17 -0.1495998 0.6290764 18 2.9883385 -0.6323118 19 2.9883385 -0.1533375 20 2.9883385 -0.1533375
Finding the row means for rows in df2 −
Example
df2$RowMeans<-rowMeans(df2,na.rm=TRUE) df2
Output
y1 y2 RowMeans 1 0.5896447 1.8711656 1.23040515 2 0.9310379 1.1159848 1.02351135 3 2.9883385 0.6290764 1.80870743 4 NA -0.6323118 -0.63231175 5 1.4797316 NA 1.47973158 6 2.9883385 -0.1533375 1.41750051 7 0.9310379 1.8711656 1.40110175 8 -0.1495998 0.6290764 0.23973829 9 0.5896447 1.8711656 1.23040515 10 0.5896447 NA 0.58964468 11 2.9883385 -0.1533375 1.41750051 12 0.5896447 -0.6323118 -0.02133354 13 2.9883385 0.6290764 1.80870743 14 -0.1495998 1.8711656 0.86078292 15 1.4797316 1.8711656 1.67544859 16 -0.1495998 -0.6323118 -0.39095576 17 -0.1495998 0.6290764 0.23973829 18 2.9883385 -0.6323118 1.17801337 19 2.9883385 -0.1533375 1.41750051 20 2.9883385 -0.1533375 1.41750051
- Related Articles
- How to find the row mean for selected columns in R data frame?
- How to divide the row values by row mean in R data frame?
- How to fill the missing values of an R data frame from the mean of columns?
- Combine two columns by ignoring missing values if exists in one column in R data frame.
- How to find the mean of row values in an R data frame using dplyr?
- How to replace missing values with row means in an R data frame?
- Roll up R data frame columns for summation by group if missing values exist in the data frame.
- How to find the row mean of columns having same name in R data frame?
- How to find the percentage of missing values in an R data frame?
- How to find the mean for multiple columns in an R data frame using mean function not colMeans?
- How to subset an R data frame by ignoring a value in one of the columns?
- How to add all columns of an R data frame by row?
- How to find the number of groupwise missing values in an R data frame?
- How to divide the data frame row values in R by row median?
- How to divide the row values by row sum in R data frame?

Advertisements