Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to move a Torch Tensor from CPU to GPU and vice versa?
A torch tensor defined on CPU can be moved to GPU and vice versa. For high-dimensional tensor computation, the GPU utilizes the power of parallel computing to reduce the compute time.
High-dimensional tensors such as images are highly computation-intensive and takes too much time if run over the CPU. So, we need to move such tensors to GPU.
Syntax
To move a torch tensor from CPU to GPU, following syntax/es are used −
Tensor.to("cuda:0")
or
Tensor.to(cuda)
And,
Tensor.cuda()
To move a torch tensor from GPU to CPU, the following syntax/es are used −
Tensor.to("cpu")
And,
Tensor.cpu()
Let's take a couple of examples to demonstrate how a tensor can be moved from CPU to GPU and vice versa.
Note − I have provided two different outputs for each program. One output for the systems having CPU only and the other output for system having GPU along with CPU.
Example 1
# Python program to move a tensor from CPU to GPU
# import torch library
import torch
# create a tensor
x = torch.tensor([1.0,2.0,3.0,4.0])
print("Tensor:", x)
# check tensor device (cpu/cuda)
print("Tensor device:", x.device)
# Move tensor from CPU to GPU
# check CUDA GPU is available or not
print("CUDA GPU:", torch.cuda.is_available())
if torch.cuda.is_available():
x = x.to("cuda:0")
# or x=x.to("cuda")
print(x)
# now check the tensor device
print("Tensor device:", x.device)
Output 1 − When GPU is not available
Tensor: tensor([1., 2., 3., 4.]) Tensor device: cpu CUDA GPU: False tensor([1., 2., 3., 4.]) Tensor device: cpu
Output 2 − When GPU is available
Tensor: tensor([1., 2., 3., 4.]) Tensor device: cpu CUDA GPU: True tensor([1., 2., 3., 4.], device='cuda:0') Tensor device: cuda:0
Example 2
# Python program to move a tensor from CPU to GPU
# import torch library
import torch
# create a tensor on CPU
x = torch.tensor([1.0,2.0,3.0,4.0])
print("Tensor:", x)
print("Tensor device:", x.device)
# Move tensor from CPU to GPU
if torch.cuda.is_available():
x = x.cuda()
print(x)
# now check the tensor device
print("Tensor device:", x.device)
Output 1 − If GPU is not available
Tensor: tensor([1., 2., 3., 4.]) Tensor device: cpu tensor([1., 2., 3., 4.]) Tensor device: cpu
Output 2 − If GPU is available
Tensor: tensor([1., 2., 3., 4.]) Tensor device: cpu tensor([1., 2., 3., 4.], device='cuda:0') Tensor device: cuda:0
Example 3
# Python program to move a tensor from GPU to CPU
# import torch library
import torch
# create a tensor on GPU
if torch.cuda.is_available():
x = torch.tensor([1.0,2.0,3.0,4.0], device = "cuda")
print("Tensor:", x)
print("Tensor device:", x.device)
# Move tensor from GPU to CPU
x = x.to("cpu")
# x = x.cpu()
print(x)
# Now check the tensor device
print("Tensor device:", x.device)
Output 1 − If GPU is not available
Tensor: tensor([1., 2., 3., 4.]) Tensor device: cpu tensor([1., 2., 3., 4.]) Tensor device: cpu
Output 2 − If GPU is available
Tensor: tensor([1., 2., 3., 4.], device='cuda:0') Tensor device: cuda:0 tensor([1., 2., 3., 4.]) Tensor device: cpu