- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How many tiles whose length and breadth are $ 12 \mathrm{~cm} $ and $ 5 \mathrm{~cm} $ respectively will be needed to fit in a rectangular region whose length and breadth are respectively:
(a) $ 100 \mathrm{~cm} $ and $ 144 \mathrm{~cm} $
(b) $ 70 \mathrm{~cm} $ and $ 36 \mathrm{~cm} $.
To do:
We have to find the number of tiles needed to fit in the rectangular regions whose length and breadth are respectively:
(a) $100\ cm$ and $144\ cm$(b) $70\ cm$ and $36\ cm$.
Solution:
We know that,
The area of a rectangle with length '$l$' and breadth '$b$' is $l \times b$.
The area of one tile $= 12\ cm\times5\ cm$
$= 60\ cm^2$
(a) The area of the rectangular region $=100\ cm\times144\ cm$
$= 14400\ cm^2$
We get the number of tiles by dividing the area of the rectangular region by the area of one tile.
The number of tiles required $= \frac{14400\ cm^2\ cm}{60\ cm^2}$
$=240$
The number of tiles needed to fit in the rectangular region is $240$.
(b) The area of the rectangular region $=70\ cm\times36\ cm$
$= 2520\ cm^2$
We get the number of tiles by dividing the area of the rectangular region from the area of one tile.
The number of tiles required $= \frac{2520\ cm^2\ cm}{60\ cm^2}$
$=42$
The number of tiles needed to fit in the rectangular region is $42$.
- Related Articles
- How many tiles of length and breadth 12 cm and 5 cm respectively will be needed to cover a rectangular region whose length and breadth are 100 cm and 144 cm respectively?
- If the length and breadth of a rectangle are \( 10 \mathrm{~cm} \) and \( 20 \mathrm{~cm} \), respectively, find the length of its diagonal.
- Find the areas of the rectangles whose sides are :(a) \( 3 \mathrm{~cm} \) and \( 4 \mathrm{~cm} \)(b) \( 12 \mathrm{~m} \) and \( 21 \mathrm{~m} \)(c) \( 2 \mathrm{~km} \) and \( 3 \mathrm{~km} \)(d) \( 2 \mathrm{~m} \) and \( 70 \mathrm{~cm} \)
- What is the length of the wooden strip required to frame a photograph of length and breadth \( 32 \mathrm{~cm} \) and \( 21 \mathrm{~cm} \) respectively?
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- The length, breadth and height of a room are \( 825 \mathrm{~cm}, 675 \mathrm{~cm} \) and \( 450 \mathrm{~cm} \) respectively. Find the longest tape which can measure the three dimensions of the room exactly.
- In \( \Delta \mathrm{XYZ}, \mathrm{S} \) and \( \mathrm{T} \) are points of \( \mathrm{XY} \) and \( \mathrm{XZ} \) respectively and ST \( \| \mathrm{YZ} \). If \( \mathrm{XS}=4 \mathrm{~cm} \), \( \mathrm{XT}=8 \mathrm{~cm}, \mathrm{SY}=x-4 \mathrm{~cm} \) and \( \mathrm{TZ}=3 x-19 \mathrm{~cm} \) find the value of \( x \).
- In figure below, \( \mathrm{PA}, \mathrm{QB}, \mathrm{RC} \) and \( \mathrm{SD} \) are all perpendiculars to a line \( l, \mathrm{AB}=6 \mathrm{~cm} \), \( \mathrm{BC}=9 \mathrm{~cm}, C D=12 \mathrm{~cm} \) and \( S P=36 \mathrm{~cm} \). Find \( P Q, Q R \) and \( R S \)."
- In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
- How many coins \( 1.75 \mathrm{~cm} \) in diameter and \( 2 \mathrm{~mm} \) thick must be melted to form a cuboid \( 11 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7 \mathrm{~cm} ? \)
- \( A \) and \( B \) are respectively the points on the sides \( P Q \) and \( P R \) of a triangle \( P Q R \) such that \( \mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm} \) and \( \mathrm{PB}=4 \mathrm{~cm} . \) Is \( \mathrm{AB} \| \mathrm{QR} \) ? Give reasons for your answer.
- The lengths of three consecutive sides of a quadrilateral circumscribing a circle are \( 4 \mathrm{~cm}, 5 \mathrm{~cm} \), and \( 7 \mathrm{~cm} \) respectively. Determine the length of the fourth side.
- DL and \( B M \) are the heights on sides \( A B \) and AD respectively of parallelogram \( \mathrm{ABCD} \) (Fig 11.24). If the area of the parallelogram \( \mathrm{A} \) is \( 1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm} \) and \( \mathrm{AD}=49 \mathrm{~cm} \), find the length of \( \mathrm{BM} \)"\n
- If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
