- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How can Tensorflow be used to visualize training results using Python?
The training results can be visualized with Tensorflow using Python with the help of the ‘matplotlib’ library. The ‘plot’ method is used to plot the data on the console.
Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?
We will use the Keras Sequential API, which is helpful in building a sequential model that is used to work with a plain stack of layers, where every layer has exactly one input tensor and one output tensor.
A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model.
An image classifier is created using a keras.Sequential model, and data is loaded using preprocessing.image_dataset_from_directory. Data is efficiently loaded off disk. Overfitting is identified and techniques are applied to mitigate it. These techniques include data augmentation, and dropout. There are images of 3700 flowers. This dataset contains 5 sub directories, and there is one sub directory per class. They are: daisy, dandelion, roses, sunflowers, and tulips.
We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.
Example
print("Calculating the accuracy") acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] print("Calculating the loss") loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) print("The results are being visualized") plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
Code credit −https://www.tensorflow.org/tutorials/images/classification
Output
Calculating the accuracy Calculating the loss The results are being visualized
Explanation
The above plots indicate that the training accuracy and validation accuracy are not in sync.
The model has achieved only about 60 percent accuracy on the validation dataset.
This is known as overfitting.
Training accuracy has increased linearly over time, but validation accuracy has stalled at around 60 percent in the training process.
When the number of training examples is small, the model learns from noises or unwanted details from training examples.
This negatively impacts the performance of the model on new examples.
Due to overfitting, the model will not be able to generalize well on the new dataset.
There are many ways in which overfitting can be avoided. We will use data augmentation to overcome overfitting.
- Related Articles
- How can Tensorflow be used to visualize the loss versus training using Python?
- How can Tensorflow be used to visualize the results of the model?
- How can Tensorflow be used to visualize the data using Python?
- How can Tensorflow be used to visualize the flower dataset using Python?
- How can Tensorflow be used to plot the results using Python?
- How can Tensorflow and pre-trained model be used to visualize the data using Python?
- How can Tensorflow and pre-trained model be used to continue training the model using Python?
- How can Tensorflow be used to prepare the IMDB dataset for training in Python?
- How can Tensorflow be used with estimators to visualize the titanic data?
- How can Tensorflow be used to pre-process the flower training dataset?
- How can Tensorflow be used to visualize the augmented data from the dataset?
- How can Tensorflow be used with flower dataset to continue training the model?
- How can Tensorflow be used to compose layers using Python?
- How can Tensorflow be used to split the flower dataset into training and validation?
- How can Tensorflow be used to split the Illiad dataset into training and test data in Python?
