How can Tensorflow be used to add a batch dimension and pass the image to the model using Python?

TensorflowServer Side ProgrammingProgrammingPython

Tensorflow can be used to add a batch dimension and pass the image to the model by converting the image to a Numpy array.

Read More: What is TensorFlow and how Keras work with TensorFlow to create Neural Networks?

A neural network that contains at least one layer is known as a convolutional layer. We can use the Convolutional Neural Network to build learning model. 

We are using the Google Colaboratory to run the below code. Google Colab or Colaboratory helps run Python code over the browser and requires zero configuration and free access to GPUs (Graphical Processing Units). Colaboratory has been built on top of Jupyter Notebook.

The intuition behind transfer learning for image classification is, if a model is trained on a large and general dataset, this model can be used to effectively serve as a generic model for the visual world. It would have learned the feature maps, which means the user won’t have to start from scratch by training a large model on a large dataset.

TensorFlow Hub is a repository that contains pre-trained TensorFlow models. TensorFlow can be used to fine-tune learning models.

We will understand how to use models from TensorFlow Hub with tf.keras, use an image classification model from TensorFlow Hub.  Once this is done, transfer learning can be performed to fine-tune a model for customized image classes. This is done by using a pretrained classifier model to take an image and predict what it is. This can be done without needing any training.

Example

grace_hopper = np.array(grace_hopper)/255.0
print("The dimensions of the image are")
print(grace_hopper.shape)
result = classifier.predict(grace_hopper[np.newaxis, ...])
print("The dimensions of the resultant image are")
print(result.shape)
predicted_class = np.argmax(result[0], axis=-1)
print("The predicted class is")
print(predicted_class)

Code credit −https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub

Output

The dimensions of the image are
(224, 224, 3)
The dimensions of the resultant image are
(1, 1001)
The predicted class is
819

Explanation

  • A batch dimension is added.
  • The image is passed to the model.
  • The result is a 1001 element vector of logits.
  • This will rate the probability of every class for the image.
raja
Published on 13-Feb-2021 08:08:42
Advertisements