- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Relation between Trigonometric & Exponential Fourier Series
Trigonometric Fourier Series
A periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions. If these orthogonal functions are the trigonometric functions, then it is known as trigonometric Fourier series.
Mathematically, the standard trigonometric Fourier series expansion of a periodic signal is,
$$\mathrm{x(t)=a_{0}+ \sum_{n=1}^{\infty}a_{n}\:cos\:\omega_{0}nt+b_{n}\:sin\:\omega_{0}nt\:\:… (1)}$$
Exponential Fourier Series
A periodic function can be represented over a certain interval of time in terms of the linear combination of orthogonal functions, if these orthogonal functions are the exponential functions, then it is known as exponential Fourier series.
Mathematically, the standard exponential Fourier series expansion for a periodic function is given by,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} t}\:\:… (2)}$$
Obtain Trigonometric Fourier Series from Exponential Fourier Series
The exponential Fourier series of a periodic function $x(t)$ is given by,
$$\mathrm{x(t)=\sum_{n=−\infty}^{\infty}C_{n}e^{jn\omega_{0} t}}$$
$$\mathrm{\Rightarrow\:x(t)=C_{0}+\sum_{n=−\infty}^{-1}C_{n}e^{jn\omega_{0} t}+\sum_{n=1}^{\infty}C_{n}e^{jn\omega_{0} t}}$$
$$\mathrm{\Rightarrow\:x(t)=C_{0}+\sum_{n=1}^{\infty}(C_{-n}e^{-jn\omega_{0} t}+C_{n}e^{jn\omega_{0} t})}$$
$$\mathrm{\Rightarrow\:x(t)=C_{0}+\sum_{n=1}^{\infty}[C_{-n}(cos\:n\omega_{0}t-j\:sin\:n\omega_{0}t)+C_{n}(cos\:n\omega_{0}t + j\:sin\:n\omega_{0}t)]}$$
$$\mathrm{\Rightarrow\:x(t)=C_{0}+\sum_{n=1}^{\infty}[(C_{n}+C_{-n})cos\:n\omega_{0}t+j(C_{n}-C_{-n})sin\:n\omega_{0}t]\:\:… (3)}$$
Now, on comparing equation (3) with the standard trigonometric Fourier series given in the eq. (1), we obtain the coefficients of trigonometric Fourier series as follows −
$$\mathrm{a_{0}=C_{0}}$$
$$\mathrm{a_{n}=C_{n}+C_{-n}}$$
$$\mathrm{b_{n}=j(C_{n}+C_{-n})}$$
By evaluating these trigonometric coefficients, we can write the trigonometric Fourier series expansion of the periodic function.
Obtain Exponential Fourier Series from Trigonometric Fourier Series
The exponential Fourier series can be obtained from the trigonometric Fourier series as follows −
The trigonometric Fourier series expansion of a periodic function is given by,
$$\mathrm{x(t)=a_{0}+\sum_{n=1}^{\infty}a_{n}\:cos\:\omega_{0}nt+b_{n}\:sin\:\omega_{0}nt}$$
Where, the trigonometric Fourier coefficients are given by,
$$\mathrm{a_{0}=\frac{1}{T}\int_{0}^{T}x(t)dt\:\:… (4)}$$
$$\mathrm{a_{n}=\frac{2}{T}\int_{0}^{T}x(t)\:cos\:n\omega_{0}t\:\:dt\:\:\:… (5)}$$
$$\mathrm{b_{n}=\frac{2}{T}\int_{0}^{T}x(t)sin\:n\omega_{0}t\:\:dt\:\:\:… (6)}$$
From the exponential Fourier series, the exponential Fourier coefficient $C_{n}$ is given by,
$$\mathrm{C_{n}=\frac{1}{T}\int_{0}^{T}x(t) e^{-jn\omega_{0} t}dt}$$
By using Euler’s formula, we obtain,
$$\mathrm{C_{n}=\frac{1}{T}\int_{0}^{T} x(t)(cos\:n\omega_{0} t - j\:sin\:n\omega_{0} t)dt}$$
$$\mathrm{\Rightarrow\:C_{n}=\frac{1}{T}\left ( \frac{2}{T}\int_{0}^{T} x(t)\:cos\:n\omega_{0} t\: dt-j\frac{2}{T}\int_{0}^{T} x(t)\: sin \:n\omega_{0} t dt \right )… (7)}$$
On comparing equation (7) with (5) & (6), we get,
$$\mathrm{C_{n}=\frac{1}{2}[a_{n}-jb_{n}]\:… (8)}$$
Similarly, the exponential Fourier coefficient $C_{-n}$ is,
$$\mathrm{C_{-n}=\frac{1}{T}\int_{0}^{T}x(t) e^{jn\omega_{0} t}dt}$$
By using Euler’s formula, we obtain,
$$\mathrm{C_{-n}=\frac{1}{T}\int_{0}^{T}x(t)(cos\:n\omega_{0}t+j\:sin\:n\omega_{0}t)\:dt}$$
$$\mathrm{\Rightarrow\:C_{-n}= \frac{1}{2}\left(\frac{1}{T}\int_{0}^{T}x(t)cos\:n\omega_{0}t\:dt + j\frac{2}{T}\int_{0}^{T} x(t)\:sin\:n\omega_{0} t dt \right)\:\:… (9)}$$
On comparing equation (9) with (5) & (6), we get,
$$\mathrm{C_{-n}=\frac{1}{2}[a_{n}+jb_{n}]\:… (10)}$$
And, the exponential Fourier coefficient $C_{0}$ is,
$$\mathrm{C_{0}=\frac{1}{T}\int_{0}^{T}x(t)\:dt=a_{0}… (11)}$$
Using equations (8), (10) & (11), we can obtain the values of exponential Fourier coefficient from trigonometric Fourier coefficients and then the exponential Fourier series from the trigonometric Fourier series.
- Related Articles
- Trigonometric Fourier Series – Definition and Explanation
- Signals & Systems – Complex Exponential Fourier Series
- Expression for Exponential Fourier Series Coefficients
- Expressions for the Trigonometric Fourier Series Coefficients
- Difference between Fourier Series and Fourier Transform
- Relation between Laplace Transform and Fourier Transform
- Signals and Systems – Relation between Discrete-Time Fourier Transform and Z-Transform
- Fourier Series – Representation and Properties
- Fourier Transform of Single-Sided Real Exponential Functions
- Fourier Transform of Two-Sided Real Exponential Functions
- Fourier Cosine Series – Explanation and Examples
- Derivation of Fourier Transform from Fourier Series
- Fourier Transform of Unit Impulse Function, Constant Amplitude and Complex Exponential Function
- GIBBS Phenomenon for Fourier Series
- Linearity and Conjugation Property of Continuous-Time Fourier Series
